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2 Introduction

This is the final report of a five months research visit at the Berkeley Ini-
tiative in Soft Computing (BISC), Department of Electrical Engineering and
Computer Science, University of California, Berkeley. The research visit
was funded by the Marshall Plan Scholarship of the Austrian Marshall Plan
Foundation for spring 2009. The results and findings accomplished during
the research visit contribute to the scholarship holder’s dissertation program
in geoinformation, cunducted at the Institute of Geoinformation and Cartog-
raphy at the Vienna University of Technology.

The remainder of the report is organized as follows: Chapter 3 restates
the scholarship holder’s PhD topic and research hypothesis and relates it
to the research conducted at BISC. Chapter 4 lists the objectives of the
research visit. Chapter 5 lists and evaluates the courses and events that have
been attended by the scholarship holder during her stay at UC Berkeley.
Chapter 6 gives an overview of the research process during the scholarship
period and discusses the results briefly. After a short summary in chapter
7, chapter 8 concludes the report with acknowledgements. The appendix
contains a presentation and two publications that have been compiled during
the research visit.

3 PhD Topic and Research Hypothesis

Spatial analysis is one of the key tools of geographic information systems
(GIS). In vector based GIS spatial analysis is based on the algebraic op-
erations of Cartesian geometry. Cartesian geometry is an idealization that
represents real world objects by polygons, which comprise of infinitely small
points and and infinitely thin lines. This is in contrast to the fact that the
location of borders and vertices of geographic objects is inherently uncertain
[13], [10]. Consequently, their representation in a GIS is only an approxima-
tion.

In general current GIS software does not store information on the ap-
proximation error. In the cases where this information is stored, the error is
usually not propagated through the geometric construction processes which
is the basis for spatial analysis. Very few software tools exists, that propa-
gates statistical error through geometric constructions, e.g. [5], and no tool
is able to propagate possibilistic or veristic positional information.

The scholarship holder’s PhD research is concerned with laying the foun-
dations for a tool that is capable of propagating arbitrary modalities of un-
certainty through geometric constructions in a vector based GIS: Uncertainty
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degrees are introduced at the lowest level of geometric reasoning, at the level
of the axioms of Euclidean geometry.

The presented research proposes a method to propagate arbitrary modal-
ities of error through the process of spatial analysis by assigning a degree of
uncertainty to the geometric axioms themselves. Each step of a geometric
construction process used during a spatial analysis task can be seen as an in-
ference step from a set of axioms. Fuzzy aproximate reasoning with linguistic
variables provides a system of book-keeping and combining the uncertainty
degrees of the respective axiom set in every step.

PhD topic:
Spray Can Geometry - An Axiomatic Approach to Geometric Uncer-
tainty Modeling for Vector Based Geographic Information Systems

Research Hypothesis:
An axiomatic model of geometry can be established that incorporates
positional uncertainty of objects and operations. The model reflects
the extended character of geographic features and the uncertainty in
their representation in geographic information systems. A degree of
uncertainty is assigned to the axioms using linguistic variables.

The theory of linguistic variables and fuzzy if-then-rules was introduced
by Lotfi A. Zadeh in [22], [23], [24], [25] as a means of reasoning with impre-
cise knowledge. It is part of the framework of the so-called fuzzy logic in the
broader sense, or approximate reasoning. In the proposed research, approx-
imate reasoning techniques are used to formalize approximate inference at
the axiomatic level of Euclidean geometry. Prof. Zadeh is head of the BISC
research group.

4 Objectives of the Research Visit at BISC

The objectives of the research visit at the BISC research group were

• to deepen knowledge and experience in the field of fuzzy logic and
approximate reasoning theory and application,

• to establish closer contact to and collaboration with the BISC research
group,

• to apply the methodology of approximate reasoning to the problem do-
main of the scholarship holder’s PhD topic in order to test the research
hypothesis, and
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• to communicate the methodology to colleagues at the home institution
and collaborate in applying it to the department’s core research topics.

5 Courses and Events

5.1 Courses

In contrast to the initial scholarship application, the scholarship period did
not cover the entire spring semester at UC Berkeley: Due to an administrative
delay in the application process, the start of the scholarship period had been
postponed for two months, from February 15th, 2009, to April 15th, 2009.
For this reason, lectures at undergraduate level, instead of graduate level
courses, have been chosen for auditing.

Having the status of a visiting scholar at UC berkeley, the scholarship
holder was not eligible of enrolling in courses as a regular student, but to audit
certain courses in consultation with the responsible teachers. Three under-
graduate lectures and one graduate level group seminar have been audited.
In the following, these courses are listed, together with a short evaluation of
each course.

ClassicalGeometries
Lecturer : Vera Serganova
Course Number : MATHEMATICS 130 P 001 LEC
Description: A critical examination of Euclid’s Elements; ruler and
compass constructions; connections with Galois theory; Hilbert’s ax-
ioms for geometry, theory of areas, introduction of coordinates, non-
Euclidean geometry, regular solids, projective geometry.
Evaluation: The content of this lecture related closely to the scholar-
ship holder’s PhD topic of axiomatic uncertainty modelling of geometric
reasoning in geographic information systems. The course put a great
stress on the axiomatic setup of geometric theories and the resulting
hirarchical structure. Interdependencies were discussed in detail. The
understanding of Euclidean and non-Euclidean geometries was deep-
ened considerably.

Introduction to Artificial Intelligence
Lecturer : John DeNero
Course Number : COMPUTER SCIENCE 188 P 001 LEC
Description: Basic ideas and techniques underlying the design of intelli-
gent computer systems. Topics include heuristic search, problem solv-
ing, game playing, knowledge representation, logical inference, plan-
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ning, reasoning under uncertainty, expert systems, learning, percep-
tion, language understanding.
Evaluation: The course offered a broad overview of soft computing
techniques in artificial intelligence. In addition to the lecture appoint-
ments, John DeNero offered tutorials, where the single topics where
discussed in more detail. DeNero put an emphasis on baysian methods
and touched upon the subject of fuzzy sets theory and fuzzy reasoning
only shortly. Baysian methods, and Baysian graphical networks in par-
ticular, offer an alternative to fuzzy approximate reasoning for many
applications. As a result of the tutorial discussions, the usefulness of
fuzzy methods for the problem domain of axiomatic modelling of geo-
metric reasoning for geographic information systems was consolidated.

Probability and Random Processes
Lecturer : Anantharam
Course Number : ELECTRICAL ENGINEERING 126 P 001 LEC
Description: Some knowledge of real analysis and metric spaces, in-
cluding compactness, Riemann integral. Knowledge of Lebesgue inte-
gral and/or elementary probability is helpful, but not essential, given
otherwise strong mathematical background. Measure theory concepts
needed for probability. Expectation, distributions. Laws of large num-
bers and central limit theorems for independent random variables.
Characteristic function methods. Conditional expectations; martin-
gales and theory convergence. Markov chains. Stationary processes.
Evaluation: The course offered a basic introduction to probability the-
ory and it’s applications for electrical engineering problems. The main
benefit for the scholarship holder was to get introduced to the theory of
random processes and to revise the subject of probability theory with
an emphasis on applications.

Group Studies Seminar
Lecturer : Lotfi A. Zadeh
Course Number : COMPUTER SCIENCE 298 P 011 LEC
Description: Advanced study in various subjects through seminars on
topics to be selected each year, informal group studies of special prob-
lems, group participation in comprehensive design problems, or group
research on complete problems for analysis and experimentation.

04/16/2009: Dr. Dilek Hakkani-Tur, International Computer Science
Institute (ICSI), Syntactic and Semantic Graphs for Information
Distillation.
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04/28/2009: Dr. Julia Taylor, Purdue University and RiverGlass
Inc., Recognizing Text Based Humor Through The Use Of On-
tologies

06/11/2009: Professor Lotfi A. Zadeh, EECS UC Berkeley, Toward
Extended Fuzzy Logic—A First Step

06/12/2009: Professor Rafik Aliev, Head of the Department of Computer-
Aided Control Systems, Azerbaijan State Oil Academy, Baku, De-
cision Analysis with imprecise probabilities

06/18/2009: Dr. Vilem Novak, Institute for Research and Appli-
cations of Fuzzy Modeling, University of Ostrava, Analysis and
Forecasting Time Series using Soft Computing Techniques

Evaluation: The one hour presentations were followed by a one hour
discussion of the topic and about related literature. Prof. Zadeh’s and
Dr. Novak’s talks were of particular interest for the research topic of
the scholarship holder.

5.2 Round Table Discussions

The BISC group organizes weekly Round Table Discussions. The discus-
sions aim at fostering interdisciplinary collaborations between researchers of
different fields who are using soft computing teechniques in their research.
Each week, a researcher is invited to be discussion leader. As an impulse,
the discussion leader gives a brief and informal outline of the key questions
in his or her research field and the role of soft computing techiques in this
context.

In the following the Round Table Discussion appointments are listed that
have been attended by the scholarship holder:

03/03/2009: Prof. Fumio Mizoguchi, Science University of Tokyo. user
preference learning based on fuzz reasoning

03/11/2009: Prof. Martin Wainwright, Department of Statistics, UC Berke-
ley. Topic: statistical machine learning

03/18/2009: Dr. Sue Liu, Center for Study of Language and Information
(CSLI), Stanford University. Topic: text summarization

04/01/2009: Prof. Murat Arcak, College of Engineering, UC Berkeley.
Topic: control in systems of different scale
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05/13/2009: Gerald Friedland, International Computer Science Institute
(ICSI)

05/15/2009: Prof. Sanjoy Mitter, Department of Electrical Engineering,
MIT. Topic: feedback and control

05/19/2009: Professor Claire Tomlin, College of Engineering, UC Berkeley.
Topic: modeling biological cell networks

05/27/2009: Dr. Monika Ray, UC Davis School of Medicine

06/05/2009: Gwen Wilke, Institute for Geoinformation and Cartography,
TU Vienna Topic: positional uncertainty in geographic information
systems (slides see Appendix)

06/18/2009: Dr. Irina Perfilieva, Institute for Research and Applications
of Fuzzy Modeling, University of Ostrava. Topic: fuzzy transform

Evaluation: The BISC Round Table Discussions provided an excellent op-
portunity to get insight in related fields of research and make contact with
representatives of other institutions concerned with uncertainty modelling.
The discussions with Dr. Irina Perfilieva and Dr. Vilem Novak from the
Institute for Research and Applications of Fuzzy Modeling, University of Os-
trava, were of particular interest for the scholarship holder. A collaboration
and/or a research visit at the University of Ostrava in the following academic
year has been considered.

5.3 Miscellaneous

Regular meetings with the advisor: The scholarship holder held regu-
lar meetings with Prof. Zadeh for a critical review and discussion of
the progress concerning the research objective. The meetings took place
about every second week. Prof. Zadeh gave very helpful suggestions
for the general direction of the research as well as detailed advice. He
expressed his satisfaction with the work done so far.

04/18/2009: Math Cal Day: Prof. Robin Hartshorne on Impossibility in
Mathematics

05/19/2009: Visited the UC Berkeley Geospatial Innovation Facility (GIF)

05/13/2009: EECS Joint Colloquium Distinguished Lecture Series: Prof.
Daphne Koller on Probabilistic Models for Holistic Scene Understand-
ing
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6 Research Process and Outcome

The research objective for the research visit at the BISC group was to deepen
knowledge and experience in the theory and applications of fuzzy logic and
approximate reasoning, and to apply it to the field of geographic information
science. In particular the problem domain of geometric reasoning under un-
certainty in vector based geographic informations systems has been adressed.

6.1 Research Process

Starting point:
In the work prior to the research visit at the BISC group existing geo-
metric models of positional uncertainty have been systematically tested
for compliance with the axioms of projective and Euclidean geometry,
respectively. All models violated the respective algebras and it was not
possible for the author to modify the models in way that eliminates the
flaws and maintain the intended deductive appartus of geometry at the
same time.
It was concluded that an exact deduction apparatus does not provide
the necessary explication power to describe perception-based reason-
ing with inexact geometric objects. The framework of fuzzy approx-
imate reasoning has been proposed as a possibly appropriate tool for
formulating inexact reasoning procedures in the context of geometric
uncertainty modeling for GIS.

Methodology:
As a basis for the research conducted at BISC the axiomatic system for
Euclidean geometry as given by Hilbert in [15] has been chosen. The
following tasks have been adressed:

• identifying suitable fuzzy interpretations of Hilbert’s primitive ge-
ometric objects, namely points and lines.

• identifying suitable fuzzy interpretations of Hilbert’s primitive
geometric relations, namely equality, incidence, betweenness and
congruence.

• identifying suitable approaches within the framework of fuzzy logic
and approximate reasoning to modeling deductive systems.

An extensive literature review has been conducted during the whole
period of the research visit, which was facilitated by the fact that Prof.
Zadeh invented the theory of fuzzy logic at UC Berkeley in 1965. As a
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result, the available material concerning this research field at the UC
Berkeley library is overwhelming.
According to the aforementioned tasks, approaches to specifying fuzzy
sets, fuzzy relations and fuzzy approximate deduction have been inves-
tigated and tested for their applicability to the given problem. On the
basis of the reviewed literature, the course contents and the extensive
discussions with the BISC group members and visitors during seminars
and round table appointments, considerable progress has been made in
identifying useful approaches and excluding unsuitable ones.

Overview:
During the first and second month, the main focus of research lay on
a literature review of the fundamentals of fuzzy logic in the narrow
sense, i.e. the branch of fuzzy logic dealing with mathematical mul-
tivalued logic. Among many other books and articles, the following
books turned out to be particularly useful: [20], [11], [17], [14], [16],
[19], [9]. A basic understanding of the field has been achieved and the
different possible choices of algebaic structures that can underly a fuzzy
logic have been reviewed.
In the course of the first attempts in modelling Hilbert’s axiom schemata,
it has become clear that the type of fuzzy sets that are used to model
the primitives point and line necessarily result from the choice of fuzzy
relations for modelling the equality, incidence, betweenness and congru-
ence. For this reason, a further analysis of fuzzy sets that are suitable
to model fuzzy geographic entities has been postponed.
During the third month, fuzzy relations have been investigated that
can be used as candidates for fuzzifying the primitive geomtric rela-
tions equality, incidence, betweenness and congruence used in Hilberts
axiomatization of Euclidean geometry. Since the uniqueness of geomet-
ric constructions is of special importance for all geometric reasoning, a
focus has been put on modelling the equlity relation of geometric prim-
itives.
In the fourth and fivth month, the emphasis has been put on fuzzy
logic in the broader sense, i.e. approximate reasoning techiques such as
generalized modus ponens, fuzzy if-then-rules, the theory of linguistic
variables, fuzzy quantifyers, analogical reasoning, fuzzy control.

Identification of a suitable algebraic structure:
 Lukasiewicz algebra has been identified to be most suitable for the
description of geometric problems. The reason lies in the fact that
 Lukasiewicz algebras play a distinguished role for representing the al-
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gebra of truth values [17]. Another reason, which is geometrically moti-
vated, is the fact that fuzzy indistinguishability relations can be shown
to be dual to pseudo-distances, if the  Lukasiewicz t-norm is used [4].

Fuzzy relations:
Fuzzy indistinguishability relations have been identified as being of
particular importance for modelling geometric reasoning under uncer-
tainty. Fuzzy indistinguishability relation are the fuzzy interpretations
of crisp equivalence relations. As such, they can be used to fuzzify the
equality of the geometric primitives point and line. Since in all geo-
metric deductive reasoning, i.e. already in relatively simple incidence
geometries, the uniqueness of geometric constructions is crucial, a spe-
cial emphasis has been put on this point.
It turned out that for most semantical interpretations of geometric ob-
jects with uncertainty in location, equality is not transitive. This phe-
nomenon is commonly known as the Poincaré paradox [18], [8], [3]. As
a consequence, fuzzy indistinguishability relations are not suitable for
modeling equality under positional uncertainty. Resemblance relations
[8] or approximate t-similarity relations [12] must be employed.

Approximate reasoning:
The Mamdani type inference and the Takagi-Sugeno type inference for
fuzzy control have been investigated [20] and could be excluded as suit-
able approaches to fuzzy deductive reasoning. The fuzzy if-then-rules
used in fuzzy control are presented as implications, but, from the logi-
cal point of view, do not model the implication operator in a reasonable
way. Additionally, “it has slowly become clear, that fuzzy control deals
with approximation of functions on the basis of pieces of fuzzy infor-
mation of the kind “for arguments approximately equal to ci the image
is approximately equal to di”. ” ([14], p.177)
In contrast to this, fuzzy if-then-rules can be interpreted as linguis-
tically characterized logical implications, which receive their semantic
interpretation and validation from expert knowledge. On this basis, de-
duction on simple linguistic descriptions is possible [17]. Based on this
idea, the workshop-paper “Approximate Geometric Reasoning With
Extended Geographic Objects” has been published (see appendix).
Another approach to approximate deduction is provided by Rational
Pavelka Logic (RPL) [14]. In RPL, it is possible to draw pertially true
conclusions from partially true premises. Whereas deduction on lin-
guistic descriptions is based on partially true predicates, in RPL the
axioms themselves are allowed to be partially true and (partially true)
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conclusions can be derived from them. A conference paper based on
this idea is planned and in process (”Geometric Reasoning Under Un-
certainty with Rational Pavelka Logic”, see chapter 6.2).

Conclusions and outcome:
Fuzzy logic and approximate reasoning provide a fromal apparatus for
fromulating deductive reasoning schemes under uncertainty. Its appli-
cability to the problem domain of geometric uncertainty modelling for
GIS could be confirmed and significant progress has been made towards
formulating a fuzzified model of axiomatic Euclidean geometry. Instead
of fuzzyfying the geometrical objects and operations on the object level
only, the approximate reasoning framework provides techniques that
allow to additionally fuzzify the logical inference mechanism that un-
derlies the axioamtic system on a metalogical level.
It is expected that a significant subset of Euclidean gemetric reasoning
can be fuzzyfied with this approach, namely the subset that is for-
malizable with first order logic. This subset comprises of all axioms
of incidence, betwenness and congruence and ommits the archimedian
property of continuity. Since geometric reasoning in a GIS setting is
always restricted to a finite map frame, continuity to infinity is not a
necessary condition.

6.2 Presentations and Publications

A presentation at the BISC Round Table has been given. One extended
abstract for a doctoral colloquium and a workshop paper has so far been
submitted and accepted. As a result from discussions with BSIC members
and the research conducted at the BISC group, two publications are in pro-
cess. In the following the presentation and the publications are listed:

Wilke, G., Positional Uncertainty in Geographic Information
Systems . Presented at the BISC Round Table Discussion on 06/05/
2009. For a list of Round Table Discussions see chapter 5.2. For ab-
stract and slides see appendix.

The scholarship holder’s PhD topic, the motivation from the field of
geographic information science an the relation to fuzzy logic has been
addressed. The audience comprised of the BISC goup members and
serveral visitors. The relevance of the work was confirmed by the au-
dience.

Wilke, G., A Model of Positional Uncertainty for the Vector
Data Model Based on Axiomatic Geometry . Accepted for Pub-
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lication at the COSIT 2009 doctoral colloquium. See appendix for the
extended astract.

Wilke, G., Approximate Geometric Reasoning With Extended
Geographic Objects . Accepted for Publication at the ISPRS-COST
Workshop on Quality, Scale, and Analysis Aspects of City Models,
Lund, Sweden, Dec. 3-4, 2009. See appendix for full paper.

Working title: Pointless Pseudometric Spaces for Geographic
Information Systems. Planned for submission to the International
Symposium on Spatial Accuracy Assessment in Natural Resources and
Environmental Sciences (Accuracy2010), Leicester, UK, July 20-23,
2009.

Working title: Geometric Reasoning Under Uncertainty with
Rational Pavelka Logic. Planned for submission to the Interna-
tional Conference on Geographic Information Science (AGILE), May
11-14, 2010.

6.3 Significance of results

The integration of techniques to handle positional uncertainty in GIS is a
dominating research topic in geographic information science. Current vector-
based GIS software is based on idealized geometric objects: Infinitely small
points and infinitely thin lines disregard the real character of object represen-
tation. As a result, inconsistencies are created and inherently vague objects
cannot be represented in a relasitic way.
Most of the ongoing research on positional uncertainty in the GIS commu-
nity is concerned with modeling topological and metrical operations [21], [6],
[2], [1], [7] whereas geometric operations are ommited. In GIS, geometrical
operations occur in the majority of spatial analsysis operations such as line
intersection, polygon overlay, point-in-polygon-analysis or buffer creation.
For this reason, a geometric calculus for uncertain objects that parallels the
usual crisp calculus of Cartesian geometry is highly desirable.

6.4 Future work

The research conducted at UC Berkeley is part of the scholarship holder’s
dissertation program. The PhD- research objective of formulating a fuzzified
axiomatic deduction system for Euclidean geometry under uncertainty for
GIS will be completed within the next 15 months.
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In particular, Rational Pavelka Logic and deduction with linguistic expres-
sions will be investigated in more detail. The properties of approximate
t-similarities as models of the geometric equality relation and it’s relation to
the geometric primitive relations incidence, betweenness and congruence will
be studied.

7 Summary

The objectives posed in chapter 4 have been achieved in large part:

• The scholarship holder gained considerable expertise in the field of fuzzy
logic and approximate reasoning theory and application.

• The methodology of approximate reasoning has been applied success-
fully to parts of the problem domain. It is expected that the task can
be completed within the coming academic year.

• A vivid echange of ideas took place during courses, Round Table Dis-
cussions and in private conversation. The scholarship holder is in close
contact to members and visitors of the BISC group, first and foremost
with Prof. Zadeh, Dr. Celikyilmaz (BISC) and Dr. DeCoensel (TU
Gent). A connection was be established to the members of the Institute
for Research and Applications of Fuzzy Modeling (Uni Ostrava), with
whom a future collaboration is considered.

• In order to communicate the gained knowledge to collegues at the home
department, a presentation will be given at the joint retreat of the
Department of Geoinformation and Cartography (TU Vienna) and the
MUSIL research group (Uni Münster) at at 09/28/2009 in Vienna.
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9 Appendix

9.1 Presentation: Positional Uncertainty in Geographic
Information Systems

9.2 Doctoral Colloquium: A Model of Positional Un-
certainty for the Vector Data Model Based on
Axiomatic Geometry

9.3 Research Paper: Approximate Geometric Reason-
ing With Extended Geographic Objects



  

Positional Uncertainty in 
Geographic Information Systems

Abstract: 

Geometric functionality in vector based geographic information systems 
(GIS) is based on infinitely small points and infinitely thin lines. This is in 
contrast to the fact that geographic features and their representation are 
extended and uncertain in location. Object representation in GIS often 
destroys the consistency of geometric reasoning. 

The existing geometric models of positional uncertainty for vector based 
GIS are not implemented in current GIS software. The reason lies in the 
fact that they do not allow geometric constructions analogous to crisp 
constructions: the pertinent operations are either not defined or not 
algebraically closed.

To overcome these difficulties an axiomatic approach is proposed that 
uses fuzzy logic models of Hilbert's axiomatization of Euclidean Geometry. 
The axiomatic approach ensures the consistency of geometric reasoning 
despite the uncertainties in the locations.

 

  

Positional Uncertainty in 
Geographic Information Systems

● GIS Data Models
● Spatial Analysis in Vector Based GIS = Geometry
● Positional Uncertainty in Vector Based GIS
● Topologic-Metric Models
● Geometric Models
● Hypothesis
● Axiomatic Geometry
● Fuzzy Models



  

GIS Data Models

Data: from surveying 
Usage: socially constructed 
geographic objects

Parcel boundaries, postal zones, census 
tracts, electric underground cable 
network, water & gas pipeline network, 
street networks, public transportation, 
tourist information system

Data: satellite & air borne imagery
Usage: natural phenomena
Land cover, land usage, elevation, soil 
types, environmental modeling, e.g. 
pollution risk assessment, prediction of 
wildfire dissemination,  impact analysis, 
simulations 

  

Spatial Analysis in Vector Based GIS
= Geometry

Vienna
Lower 
Austria

Burgen-
landStyria

Geom. data types:

points = real-world 
coordinates (long/lat) 
after projection

lines segments = 
ordered pairs of points

polygones =
closed ordered n-tupels 
of line segments

polygones

Themes, e.g

emergency coordination 
center

streams

county lines 

emergency service 
zones

Layers:

2 Databases: 
Geometry
Topology

Attributes
(relational db)

object-ID



  

Typical spatial queries:
● How many of the national emergency coordination centers are located in Vienna? 

(geometric query: needs coordinates)

● What is the fastest way from Vienna city center to “Wiener Neustadt”?
       (network query: network topology & weights)

● How many inhabitant per emergency service zone?
(geometric query)

● How many first class hotels are within a 1000m radius from the Vienna opera house? 
 (geometric query)

● How many pubs are in close walking distance from the Bermuda triangle?

● How many guesthouses are between the archaeological excavation Canuntum and 

  Bratislava?

● The fire is on the left bank of the river, about level with the old mill house.

Spatial Analysis in Vector Based GIS = 
Geometry

  

Positional Uncertainty in Vector Based GIS

riv
er

fire

Old mill house

~ Pi/2

Verbal reports

“The fire is on the left bank of 
the river, about level with the 
old mill house.”

Combination of different 
data sources with 
different lineage

Hand digitizing errors



  

Positional Uncertainty in Vector Based GIS

Measurement Errors

Does the company hit the gas 
pipeline when digging for the 
electrical uncerground cable?

Is the point within the 
polygon?

Gas

Electr
ica

l 

ca
bles

Coordinate 
point

  

Positional Uncertainty in Vector Based GIS

Cartographic 
generalization

In a large scale map the extend of the representation of 
Vienna is not (much) related with the real extend.

Vienna in different map scales 



  

Positional Uncertainty in Vector Based GIS

Inherently 
uncertain 
objects
(natural phenomena)

Is my house in the 
100- year flooding 
area?

Dynamic 
spatial 
phenomenon
(natural phenomena)

Boundaries of lakes 
often have transition 
zones.

  

Topological-Metrical Model 1:
Vage Regions (fuzzy sets)

Top. Operations: set-intersection, 
set-join, closure, interior, difference, 
distance, area, etc.

Representation in VDM:
surface, i.e. TIN

A. Dilo (TU Delft),  A. Stein, (ITC Enschede), (2006)

1D fuzzy set
(parameterized, 
topology =
relative topology) 2D fuzzy sets

Difference of (a) and (b) 
= fuzzy difference

0D fuzzy set

Objects:
fuzzy sets with 
support = open set



  

Topological-Metrical Model 2:
Objects with Broad Boundaries

Top. Relations: touches, 
intersects, overlaps, crosses, in, etc.

Representation in VDM:
9-intersection model 
(relation algebra)

  E. Clementini (Univ. of L'Aquila, Italy), (2005)

Region with 
broad boundary

Matrix has boolean values 
(empty -and non-empty)

Objects:
set with 3-valued 
domain

  

Geometric Model 1: 
Covariance based error band model

 
Yee Leung (Univ. Hong Kong), Ma (Chang'an Univ. ), M. Goodchild (UCSB):

Objects:
set with 3-valued 
domain

Points and lines

Polygon

● Algebraically closed (line intersection)
● Point-in-polygon solved
● Polygon-on-polygon solved 
 Metric proposed (distance, area)

BUT: isomorphic to crisp geometry. incidence is not a gradual (probabilistic) 
concept  



  

Geometric Model 2: 
Fuzzy geometry

Buckley, Eslami (1997):

Fuzzy lines are not unique; No fuzzy line-intersection defined; etc.

  

Research Hypothesis

“It is possible to define an axiomatic model of 2D 
geometry that incorporates geometric operations with 
tolerance for positional uncertainty. These operations 
apply to objects that reflect the extended character of 
geographic features and the positional uncertainty in their 
representation in GIS.”



  

Idea: Axiomatic f-Geometry for GIS
Basis: Hilbert's axiomatic system for Euclidean Geometry:

- 2 points define at least one line
- 2 points define at most one line
- a line contains at least 2 points
- three non-collinear points exist

Axiom Set 1:   Incidence

- If B is between A and C (A*B*C), then A,B,C are distinct collinear points.
- For distinct points A,B, a point C exists s.th. A*B*C.
- Given 3 distinct points on a line, one and only one of them is between the other two.
- (Pasch) A

BC
D

l

A,B,C non-collinear points

Axiom Set 1:  Betweenness:

Axiom Set 3: Congruency                 Axiom Set 4:  Parallelism.

  

Idea: Axiomatic f-Geometry for GIS

Uncertainty representation of points and lines segments 
such that 

1) Both are “extended” (topologically neighbourhoods)

2) Lines can be “derived” from points, i.e. two points determine a line

3) Behave like points and lines, e.g. two lines intersect in a point

riv
er

fire

Old mill house

~ Pi/2



  

Fuzzy Models

Pavelka style approximate reasoning:

Graded Inference Rules:

  

Fuzzy Models 2

Deduction from Linguistic Variables:

IF sep(P,Q) is high 
THEN

inc( P  Q ,P) is high AND∪
inc( P  Q ,Q) is high AND∪
lSh( P  Q ) is high.∪

IF inc(S’,P) is high AND
inc(S’,Q) is high AND
lSh(S’) is high

THEN
eq( P  Q ,S’) is high.∪
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1 Positional Uncertainty of Vector Data

An important research topic in geographic information science is the incorpo-
ration of positional uncertainty in geographic information systems (GIS). The
field based data model can easily handle uncertainty in location. Vector based
systems lack a natural representation of positional uncertainty, because their
conceptualization is based on mathematically ideal objects like infinitely small
points and infinitely thin lines.

Two main approaches for incorporating positional uncertainty of point and
line features for the vector data model exist: (1) buffer based models, like e.g.
the error band model [13], represent statistical variations due to measurement
errors; (2) objects with broad boundaries represent either statistical or vague
data in a framework of a 3-valued indeterminacy [3]. Both approaches fail to
implement the whole range of tests and spatial operations that can be employed
within exact Cartesian geometry. The reason lies in the fact that uniqueness of
representation of points and lines is given up, resulting in ambiguous, ill-defined
or contradictory geometric constellations of some of their exact realizations. One
example is the ill-defined point-in-polygon test as described in [8] and [5].

The goal of the present work is to disambiguate these situations by treating
objects with uncertainty in location as entireties instead of looking at their exact
realizations. A geometric model is defined that operates on points and lines with
uncertainty in location. The primitive objects and relations of the model are de-
fined in a way that complies with the axiomatic system for Euclidean geometry
given by David Hilbert in 1899 [6]. The axiomatic approach guarantees consis-
tency of the model: every interpretation of the geometric primitives point, line,
incidence, betweenness, congruency and parallelism that complies with Hilbert’s
axioms must be free of contradictions. The formal apparatus provided by the ax-
iomatic system allows to derive the whole range of composite figures, geometric
operations and tests used in vector based GIS, because all theorems of Euclidean
geometry remain valid within the model.



The approach proposed in the present work focuses on Euclidean plane ge-
ometry. The primitive objects point and line of Hilbert’s axiomatic system are
modeled by connected regions in R2. Primitive relations operate on the point
models and line models as entireties. They are algebraically closed over the do-
main of objects with uncertainty in location and satisfy the axioms of Euclidean
geometry. The axiomatic approach guarantees that the whole range of geometric
operations and tests of vector based GIS can be derived without contradictions.
The new contribution of this work is the definition of a valid model of Euclidean
geometry that is based on objects with uncertainty in location.

2 Research Hypothesis

A point with positional uncertainty cannot be unambiguously mapped to a single
coordinate point in the Cartesian space. Its representation must involve a subset
of R2, respectively R3, that consists of more than one coordinate point. The
present work focuses on two dimensional geometric models embedded in the
Cartesian plane. It is assumed that the set of coordinate points representing the
possible locations of a point with positional uncertainty can be described by a
connected region in R2. As a consequence the geometric model to be defined is
a calculus of regions.

The hypothesis of the present work states that a valid axiomatic model of
Euclidean plane geometry for vector-based GIS can be defined that represents
points and lines with uncertainty in location on the basis of connected regions
embedded in the Cartesian plane.

3 Testing Existing Models for Validity

The model building process consists of two steps: In a first step existing ap-
proaches to modelling positional uncertainty and approaches to building geome-
tries of extended objects in GIS and in other research fields are listed. These
approaches are analyzed for their definitions of primitive objects, relations and
operations. In a second step the listed models are tested for validity within the
axiomatic system of Euclidean geometry defined by Hilbert [6].

Hilbert’s axiomatic system consists of two primitive objects (points and
lines) and four primitive relations (incidence, betweenness, congruency and par-
allelism). All primitives remain undefined and are only characterized by their
properties, given by the axioms. The background logic of the axiomatic system
additionally employs an identity relation between points and lines, respectively.
Every interpretation of the primitives that satisfies the axioms is called a valid
model of Euclidean geometry.

Axioms are grouped by the type of primitive relation they invoke. Since
each group of axioms builds upon the foregoing groups, models can be tested
in a step by step process, starting with the axioms of incidence. If a model
does not provide all necessary primitives, a consistent interpretation is given, if
possible. If the interpretation of primitives do not satisfy one or more axioms



of a group, the reason is analyzed. During the course of analysis it becomes
increasingly clear which criteria a region-based model of points and lines with
positional uncertainty must satisfy in order to comply with certain groups of
axioms. According to these criteria a new model is formulated.

4 Intermediate Results: Towards a Fuzzy Model

The following approaches have been identified to be promising candidates for
defining an axiomatic model of Euclidean geometry for objects with positional
uncertainty which is based on regions: the Covariance-Based Error Band Model
for measurement-based GIS by Leung et. al. [7], the model of Objects With Broad
Boundaries by Clementini [3], Fuzzy Geometry defined by Buckley and Eslami
[2], Geometry for Places by Schmitdke [12], Region-Based Geometry formulated
by Bennett et. al. [1] and Pointless Geometry by Gerla [4].

The first three of these approaches have been tested for compliance with the
axioms of incidence. All three approaches define models for points and lines with
uncertainty in location, but only one of them explicitly defines an identity and
an incidence relation. Several interpretations of identity and incidence relations
have been tested together with the respective models. In all cases the models
already fail to satisfy Hilbert’s very first axiom, which postulates uniqueness of
line representation: in general two distinct points with positional uncertainty
define more than one line with positional uncertainty that is incident with them.

The reason for this outcome lies in the fact that in the presence of positional
uncertainty the identity relation of the background logic formally translates into
a bivalent or interval-valued indiscernibility relation on the set of points with
uncertainty in location, depending on the model and it’s semantic. As soon as
we adopt the existential part of Hilbert’s first incidence axiom - ”If A and B are
distinct points, there is at least one line that is incident with both A and B” [10] -
the indiscernibility relation induces an ambiguity in the line representation. This
outcome is in accordance with intuition and a desirable feature when modelling
positional uncertainty.

As a consequence, we must ask the question, if it is possible to embed one of
the existing models in a richer model and, by adding information, restoring the
uniqueness of line representation, while at the same time the desirable ambiguity
in the restricted model is maintained. The approach has the advantage that
all theorems of Euclidean geometry remain valid within the richer model and
existing GIS-operations can be reused [11]. To obtain a result in the restricted
model, operations are performed in the richer model and the result is restricted
afterwards.

A promising modelling language for this endeavor is fuzzy set theory and
fuzzy logic, which is built upon the notion of indiscernibility [14]: The richer
model can be formulated in terms of membership functions, the restrictions are
given by α-cuts, where the value of α may determine the degree of discernibility.
The language of fuzzy set theory does not exclude probabilistic interpretations of



membership functions [9]. The formulation of such a model and the applicability
of fuzzy set theory to modelling measurement error is subject of ongoing research.

5 Further work

Based on a valid model of geometric primitives with uncertainty in location
the properties of derived geometric concepts like angle, line segment, ray, area,
orientation and symmetry will be investigated. E.g. the notions of incidence and
betweenness are sufficient to derive the concept of orientation.

In order to measure distances, a metric or a weak metric, as for instance
proposed by Buckley and Eslami [2], will be defined on the set of points with
uncertainty in location. The potential of a weak metric to induce a topology will
be investigated.

The model of Euclidean plane geometry for points and lines with positional
uncertainty will be extended to three dimensions: Planes with uncertainty in
location will be defined as a third primitive object of the model.
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ABSTRACT: 
The article presents a conceptual framework for formal geometric reasoning with extended objects in the context of vernacular 
geography. While point data is used to construct line features, polygon features and geometric operations for spatial overlay 
analysis, there is no canonical way of constructing a linear feature or polygon feature from extended objects such as vernacular place 
names or landmarks. Vernacular place names and landmarks are often used in tourist information brochures to describe the 
approximate location of hotels, restaurants or sites of interest. Place descriptions such as "The hotel is located in the centre between 
the opera house, the Louvre museum and the Champs-Elysees" cannot be queried in common geographic information systems (GIS). 
Due to differences in size, shape and scale, extended objects may cause ill-defined geometric constellations that cannot be used for 
geometric spatial analysis.  
We propose to use fuzzy approximate reasoning techniques to keep track of the well-defined or ill-defined character of a geometric 
construction process. As an underlying deductive calculus for the reasoning process we use David Hilbert's axiomatic approach to 
geometric reasoning: based on the geometric primitives "extended point" and "extended line" geometric constructions can be 
deduced from a small set of axioms. Fuzzy reasoning has the advantage of being computationally less expensive and thus faster than 
an exact description of the model.  
 
 

1. INTRODUCTION 

1.1 Spatial analysis with extended objects 

In colloquial speech, place names and landmarks are often used 
to describe the approximate location of geographic entities. For 
example, the statement “The hotel is located between the opera 
house, the Louvre museum and the Champs-Elysee” gives a 
qualitative description of the location and might be found in a 
tourist information brochure of Paris. Up to date, geographic 
information systems (GIS) have the ability to perform 
topological reasoning with extended geographic objects like 
“the Louvre museum” or “the Champs-Elysee”. Yet, the 
capability of geometric reasoning with extended objects is still 
missing. The aim of the present work is to lay a foundation for 
geometric reasoning with extended objects that is usable for 
GIS. 
As an example of a geometric construction with extended 
objects consider an overlay analysis, where the approximate 
triangle formed by the opera house, the Louvre museum and the 
Champs-Elysee is intersected with another extended object, that 
approximately forms a rectangle. From a topological viewpoint, 
the interesting features of the resulting regions are if they are 
open, closed, one dimensional or two dimensional. From a 
geometric viewpoint, it is of interest if they are usable for 
further geometric constructions.  As another example Figure 1 
shows an approximate and ad hoc construction of the 
approximate location of the circumcenter of the same three 
objects. 
In vector based GIS many tests and operations that are used for 
spatial analysis are based on the algebra of Cartesian coordinate 
geometry, and thus on the rules of Euclidean geometry. In order 
to extend geometric tests and operations to extended objects, it 
is necessary to look at the underlying rules of Euclidean 
geometry. 
  

 
Figure 1.  Approximate triangle formed by the Louvre, the 
Opera house and the Champs-Elysee in Paris: An approximate 
circumcenter can be derived. 
 

 
Figure 2.  Ill-defined constellation: Connecting the extended 
objects A,B,C hardly makes sense. The construction of an 
approximate circumcenter is not meaningful. 



 

In an abstract logical sense, Euclidean geometry can be seen as 
a calculus that is used to derive statements about geometrical 
entities from given facts. For example "The median lines of 
every triangle intersect in a unique point." is a true statement in 
Cartesian coordinate geometry. It can be logically derived from 
few basic facts, the axioms of Euclidean geometry. If we try to 
derive the same statement for triangles that are constructed from 
extended objects instead of constructing it from extensionless 
coordinate points, we may encounter difficulties: Some 
geometric constellations allow the derivation of meaningful 
geometric statements (Figure 1), others do not (Figure 2). 
The present paper shows that the usefulness of a specific 
geometric constellation for further geometric reasoning is a 
matter of degree. We propose a framework for assigning grades 
of validity to geometric statements about extended objects that 
can be propagated through the steps of a geometric 
construction. As a first step, the present work looks at the 
incidence axioms of Euclidean geometry.  
The remainder of the article is structured as follows: Chapter 2 
briefly introduces the incidence axioms of Hilbert’s axiomatic 
system; Examples of possible interpretations of non-
extensionless geometric primitives are given; some arising 
problems are illustrated and formalized. Chapter 3 proposes 
graded truth values as a solution and the framework of 
approximate reasoning is introduced in the context of the paper. 
The article concludes with a discussion and with an outlook to 
further work. 
 
1.2 

2.1 

Related Work 

Most of the literature on qualitative spatial reasoning in the 
context of GIS is either topological or metrical in nature 
(Freksa, 1991; Frank, 1992; Dilo, 2006; Renz and Nebel,2007). 
Many of these approaches use fuzzy theory to represent 
uncertain or incomplete knowledge. It is very rarely the case 
that fuzzy logic is utilised as an approximate resoning 
technique.  
One of the latter approaches has been introduces by S. Dutta 
(1990) for geometric and metric concepts. Dutta uses fuzzy 
approximate reasoning for the propagation of positional, 
metrical, propositional and range constraints through the 
process of geometric reasoning. It is conceptually similar to the 
present work, but does not develop a systematic approximate 
calculus based on axiomatic geometry. H. Schmidtke (2005), 
provides an axiomatic geometric approach to spatial reasoning, 
but focuses more on granularity than on geometry. 
There are numerous approaches to defining Euclidean solid 
Geometry starting with the primitive notion of region or sphere 
instead of point (Tarski, 1956; Schmidt, 1979; Gerla, 1990, 
Bennett et. al., 2000).  These approaches aim at restoring 
Euclidean geometry, including the concept of a crisp point, 
starting from different primitive objects. As a consequence, 
they are necessarily based on different primitive relations and 
operations than the ones commonly used in axiom systems such 
as (Hilbert, 1962). In contrast to this, the present work aims at 
applying the classical operations to extended objects. GIS users 
should be provided with the classical tools of spatial analysis 
that are well known and can be used without learning new and 
fundamentally different theories.  
 

2. AXIOMATIC GEOMETRY AND EXTENDED 
OBJECTS 

Geometric primitives and incidence 

Euclidean geometry in its axiomatic form was introduced by 
Euclid in 300BC in his famous book Elements. In 1899 David 
Hilbert gave a complete and consistent formulation of an 
axiomatic system of Euclidean geometry (Hilbert 1962). The 
primitive objects in the two dimensional version of his 
formulation are points and lines. The most basic primitive 
relation between points and lines is the “on-relation”, usually 
called incidence. The following four axioms formulate the 
behaviour of points and lines with respect to incidence: 
 

1. For every two distinct points p and q, there exists a 
line l that is incident with p and q. 

2. l is unique. 
3. Every line is incident with at least two points. 
4. There exist at least three points that are not incident 

with the same line. 
 

The first and second axioms together state that it is always 
possible to connect two points with a unique line. In case of 
coordinate points p, q Cartesian geometry provides a formula 
for constructing this line: The parametric form reads 
 
  { }( ) |l p t q p t= + − ∈\ .     (1) 
 
When we want to connect two extended geographic objects in a 
similar way, there is no canonical way of doing so. We can not 
refer to an existing model like Cartesian algebra. Instead, a new 
way of connecting extended objects must be found that respects 
the uniqueness property of axiom 2. In the following we will 
show that such a definition cannot be found without imposing 
too restricting conditions on the extended objects to be useful in 
a GIS context. 
 
2.2 Connecting extended points 

In the following we will refer to extended objects that play the 
geometric role of points as “extended points”. As stated by 
axioms 1 and 2 of section 2.1, it should be possible to connect 
two extended points to form an “extended line”. We will denote 
coordinate points and lines of Cartesian geometry by “Cartesian 
points” and “Cartesian lines”. The meaning of the connection 
operation and the incidence relation for extended points and 
lines is a matter of definition. We will refer to such a definition 
as an “interpretation” of the connection relation and the 
incidence relation, respectively.  
For extended geographic objects that are disc-shaped and of 
same size and that do not overlap, it is easy to give an 
interpretation of connection and incidence that complies with 
the axioms 1-4 of section 2.1 (Figure 3a): The connection of the 
extended points P and Q is interpreted as a minimal incident 
parallel stripe S, i.e. a stripe that is bounded by two parallel 
Cartesian lines, that is incident with both, P and Q, and has 
minimal width. Here, S is interpreted to be incident with P, if 
P S P∩ = .  It is clear that the infimum over the width of 
possible parallel incident stripes exist and thus that S is unique. 
The third axiom holds trivially, and the fourth axiom holds 
whenever P and Q are proper subsets of the workspace.  In case 
that P and Q are disc-shaped, but of different size, the above 
interpretation loses the uniqueness property (Figure 3b). 



 

Figures 3c-3f sketch different possibilities to restore uniqueness 
by changing the interpretation of connection. In all cases, there 
seems to be a trade-off between uniqueness and usefulness for 
GIS purposes: In Figure 3c, connection is interpreted as the 
Cartesian line connecting the centres of gravity of P and Q. In 
this case all information on shape and size of P and Q is lost.  In 
Figure 3d, connection is interpreted as the convex hull of the 
Cartesian point sets P and Q. In this case, the continuation of S 
to the left of P and to the right of Q is not defined. This leaves 
every intersection outside the convex hull undefined. Figures 3e 
and 3f propose two possibilities of continuation of the convex 
hull. Both variants impose additional constraints on S that are 
not derived from the data. These artificially added constraints 
create new constraints on subsequently constructed objects. For 
instance, the extended point Q’ in Figure 3e is a translation of Q 
in the “main direction” of S.  Intuitively, Q’ should be incident 
with S, which it is not. Only if we shrink Q’ to a Cartesian 
point, the incidence relation is satisfied.  

2.3 

 

 
Figure 3.  Different interpretations of the connection of two 
extended points.  
 
In case we additionally drop the condition that extended points 
should be disc-shaped or if we allow them to overlap, the 
different interpretations of connection can become even less 
useful: Figure 4 shows two constellations where the connection 
of P and Q seems to result in a new extended point rather than 
in an object that represents an extended linear feature. 
 

 
Figure 4.  Convex-hull interpretation of the connection of two 
extended points (a) for arbitrary shapes, (b) for overlapping 
Cartesian point sets.  
 

Formalizing the model 

In order to formalize the attempts of the forgoing subchapter to 
model an incidence geometry for extended geographic objects 
for GIS, we introduce a number of predicates that characterize 
the Cartesian point sets P, Q and S qualitatively: 
 

• P is disc-shaped, dSh(P) 
• S is line-shaped, lSh(S) 
• P and Q are separated (not overlapping), sep(P,Q) 
• P is incident with S, inc(P,S) 
• S and S’ are equal, eq(S,S’) 
 

These predicates are qualitative linguistic descriptions and do 
not have a numerically precise meaning. As such, they are 
useful to formulate the conditions we want to impose on an 
interpretation of the connection operation in a GIS context:   

1. If the Cartesian point sets P and Q are separated, their 
connection S should be incident with both, P and Q, 
and S should be line-shaped. 

2. S should be unique. I.e., if S’ is incident with P and Q 
and if S’ is line-shaped, then S and S’ should be equal. 

This is a reformulation of the first and second incidence axiom 
as given in chapter 2.1. In this reformulation l is instantiated 
with the connection operator S and the terms distinct, line, 
incident and equality (uniqueness) are replaced by sep(), lSh(), 
inc() and eq(). For short, the above conditions can be written as 
follows: 
 

1. ( , ) ( , )  ( , ) ( ) sep P Q inc S P inc S Q lSh S⇒ ∧ ∧        (2) 

2. 
[ ]
[ ]

( , )  ( , ) ( )

( ', )  ( ', ) ( ') ( , ')

inc S P inc S Q lSh S

inc S P inc S Q lSh S eq S S

∧ ∧

∧ ∧ ∧ ⇒
    (3) 

 
In two-valued logic, predicates can assume either the truth 
value true (“1”), or the truth value false (“0”). For example, for 
the formula ( , )  ( , ) ( ) inc S P inc S Q lSh S∧ ∧ in (2) to be true, 
all three predicates must be true simultaneously.  
The investigations of chapter 2.2 suggest that there is no 
canonical way to assign the truth value 1 simultaneously to all 
predicates and thereby make (2) and (3) satisfiable. In the next 
section, graded truth values are introduced to circumvent the 
problem of satisfiability. 
 
 

3. FUZZY LOGIC 

Fuzzy logic is a form of multi-valued logic, where the set of 
truth values comprises the interval [0,1] rather than the discrete 
set {0,1}. Fuzzy logic is derived from fuzzy set theory, which 
was introduced 1965 in the seminal paper (Zadeh, 1961) by 
Lotfi Zadeh. In a broader sense, fuzzy logic can be used as a 
tool for approximate reasoning (Zadeh, 1975). 
 
3.1 Graded truth 

In the context of basic fuzzy predicate logic, the predicates 
dSh(), lSh(),sep(), inc() and eq() defined in section 2.3 can be 
interpreted as fuzzy predicates: each of the (unary or binary) 
fuzzy predicates is represented by a (unary or binary) fuzzy 
relation that assigns to every member of the respective domain 
a truth value from [0,1]. For example, the unary predicate lSh() 
assigns every Cartesian point set A a value [0,1]λ∈  that 
expresses the degree to which A is line-shaped.  



 

In the following, we will introduce possible numerical 
interpretations for each of the predicates. As preliminary terms 
we define for a set A of Cartesian points the minimal diameter 
 

{ }min ( ) min ( ) ( ( )) (0,1) |T
t

A ch A cg ch A t R tαφ = ∩ + ⋅ ⋅ ∈\    (5) 

 
and the maximal diameter  
 

{ }max ( ) max ( ) ( ( )) (0,1) |T
t

A ch A cg ch A t R tαφ = ∩ + ⋅ ⋅ ∈\   (6) 

 
where ch(A) and cg(A) denote the convex hull and the centre of 
gravity of A, respectively, and Rα  denotes the rotation by angle 
α  (see Figure 5a).  
 

 
Figure 5.  (a) Minimal and maximal diameter of a set A of 

Cartesian points. (b) Grade of separation sep(A,B) of A and B. 
 
For a set A of Cartesian points let 
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Note that every logical and geometrical notion used in the 
original formulation of the incidence axioms corresponds to a 
graduated fuzzy predicate.  
In order to avoid imposing additional information on the 
geometry that is not represented by the data, we choose to use 
the convex hull (P Q ch P Q= ∪∪  of the union of two 
extended points P and Q as the interpretation of the connection 
operation .  ∪
 
Example: The opera house O and the Louvre museum L in 
Figure 1 have a grade of separation of sep(O,L)=0.8, whereas 
the objects A and C in Figure 2 have a grade of separation of 
sep(A,B)=0. The degree of line-shapedness amounts to  

 and ( ) 0lSh O L =∪ .9 .3( ) 0lSh A C =∪ , respectively. 
 
3.2 Approximate Reasoning 

Within the framework of fuzzy logic in the broader sense, 
propositions of two-valued logic, as introduced in section 2.3, 
can be restated in the form of fuzzy proposition.  
For example the proposition “ ’The extended points P and Q are 
separated’ is true” – more concisely written as “sep(P,Q)=1” – 
was one of the starting points in this paper. Put into a fuzzy 

form, it can be reformulated as “The truth degree of ’The 
extended points P and Q are separated’ is high”, were high is a 
fuzzy membership function defined on the domain [0,1] (Figure 
6). In short, “sep(P,Q) is high”. A membership function “high” 
for a binary predicate is a fuzzy relation and can be constructed 
in a pertinently. 
 

 
Figure 6.  A fuzzy membership function for “high”.  

 
The conditions 1 and 2 of section 2.3 on the connection 
operation can now be formulated in the form of fuzzy rules: 
 

1. IF sep(P,Q) is high  THEN 
             inc( P Q∪ ,P) is high   AND 
             inc( P Q∪ ,Q) is high   AND 
             lSh( P Q∪ ) is high. 
2. IF  inc(S’,P) is high   AND 
              inc(S’,Q) is high   AND 
              lSh(S’) is high      THEN 
              eq( P Q∪ ,S’) is high.     

 
Fuzzy propositions allow for a certain tolerance in the degree of 
validity of predicates and thereby leave room for a trade-off of 
properties. At the same time linguistic expressions such as 
“high” impose a fuzzy constraint on the data via their 
membership function: they are flexible constraints.  
Given a set of extended geographic objects, the fuzzy rules 1 
and 2 can be used for an approximate pre-evaluation of 
potential operations and their behaviour. The fuzzy model 
carries the grade of validity of every intermediary reasoning 
step and can give warning whenever – after a number of 
reasoning steps - the grade of validity falls below a certain 
threshold.  
The use of linguistic expressions is especially useful in the 
context of tourist information systems and decision support 
systems in general: With appropriate choices of linguistic terms, 
the interpretability of system messages for lay users is 
dramatically increased.  

 
 

4. CONCLUSIONS 

4.1 Conclusions 

We have shown that straight forward interpretations of the 
connection of extended points do not satisfy the incidence 
axioms of Euclidean geometry in a strict sense. Yet, the 
geometric behaviour of extended objects can be approximately 
described by a fuzzified version of the incidence axioms. To 
describe the approximate behaviour, the framework of 
approximate reasoning is used.  The proposed mechanism 
provides the possibility to warn users, when geometric 
operations are performed that are not significant due to error 
accumulation.  
The use of fuzzy reasoning trades accuracy against speed, 
simplicity and interpretability by lay users. In the context of 



 

tourist in formation systems, these characteristics are clearly 
advantageous. 
 
4.2 

4.3 

Discussion and further work 

The membership function given in Figure 6 is a somewhat 
arbitrary choice.  A parameter optimization for finding the 
membership function that best corresponds to the real behaviour 
of the model is subject of future work. Furthermore, we will 
investigate the sensitivity of the fuzzy model with respect to the 
choice of different interpretations of geometric primitives. 
In the definitions (5),(6) and (7) of the fuzzy predicates dSh(), 
lSh(),sep(), inc() and eq(), every Cartesian point set that is 
interpreted as an extended point is wrapped with its convex hull 
before further processing. The wrapping provides a smoothing 
of the geometric properties of the point sets and thereby ensures 
that the problem is not numerically ill-posed, i.e. small changes 
in the input do not result in huge jumps in the output. Following 
this rudimentary continuity argument, it can be expected that 
the fuzzy rules given in section 3.2 provide an acceptable 
approximation of the real behaviour of the model.  
The set of incidence axioms discussed in the present article is 
only one out of fours primitive relations of Hilbert’s axiomatic 
system of Euclidean geometry. In future work, we will extend 
the set of interpretations of relations between extended points 
and lines to the following relations: betweenness (order), 
parallelism and congruence.  
After a model validation, the fuzzy rules corresponding to the 
axioms can be used to derive approximate geometric theorems 
in a way pertinent to deriving crisp theorems.  
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