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Abstract. Delaunay Triangulation (DT) is one of the most fundamental data structures in 

computational geometry. It is well known in geosciences for many years to model the real 

world objects. To extend its applications for simulating the real world processes, however, 

this data structure must support dynamic point sets (where the points are added or deleted) 

and kinetic point sets (where the position of the points vary over time). This paper reviews 

the algorithms introduced in the literature to construct the Delaunay triangulation of 2D and 

3D dynamic and kinetic points. 

Keywords. Delaunay triangulation, Voronoi diagram, Spatial data structures, Dynamic 

points, Kinetic and Moving points. 

1. Introduction 

Delaunay Triangulation (DT) is one of the most fundamental data structures in computational 

geometry. This structure is commonly used in a large set of applications, from computer 

graphics, visualization, computer vision, robotics, and image synthesis to mathematical and 

natural sciences (Cignoni et al., 1998). Delaunay triangulation of a set of points is the 

partitioning of the space into triangles that satisfies the empty circum-circle property: the 

circum-circle of each triangle does not contain any other point of the point set. This structure is 

defined for points of any dimension. The computation of the Delaunay triangulation is one of 

the classical problems of computational geometry. Many algorithms were proposed to construct 

the Delaunay triangulation of a set of points of different dimensions (Bowyer, 1981; Brown, 

1979; Cignoni et al., 1998; Dwyer, 1991; Edelsbrunner and Seidel, 1986; Edelsbrunner and 

Shah, 1992; Field, 1986; Fortune, 1987; Joe, 1991; Lawson, 1977; Maus, 1984; Mucke, 1988; 

Tanemura et al., 1983; Watson, 1981). 

Delaunay Triangulation is well known in geosciences for many years (Karimipour et al., 

2010). It is the basic data structure for many geoscientific applications such as terrain modeling, 

spatial interpolation and geological mapping problem. It is also widely used in 3D geoscientific 

modeling. ‘‘3D Delaunay triangulation is used in many geoscientific applications that collect 

data about spatial objects and domains such as features of the solid earth (aquifers), oceans 

(currents) or atmosphere (weather fronts), which fill 3D space’’(Lattuada and Raper, 1995). 

Furthermore, there are several applications in geosciences for which constructing the 3D 

Delaunay triangulation is the basis, e.g., surface modeling, iso-surface extraction (Ledoux and 

Gold, 2007) and reconstruction of 3D complex geological objects (Yong et al., 2004).  
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The problem of constructing the Delaunay triangulation for a set of points that vary over time 

has been the subject of several studies. Although this variation is mostly considered as a 

research interest in computational geometry, it is a practical requirement to use Delaunay 

triangulation in applications that simulate the real world processes (Ledoux, 2008; Mostafavi, 

2002; Mostafavi and Gold, 2004). For example, there is an approach for modeling of fluid flow 

that uses the Free-Lagrange method (FLM) (Fritts et al., 1985): the flow is approximated by a 

set of discrete points, called particles. Each particle has a mass and a velocity and is allowed to 

move freely and interact. The Voronoi diagram, which is the dual structure of Delaunay 

triangulation and tessellates the space based on a set of points, has been used for tessellation of 

the space in this modeling. This structure must be modified as the particles move. Earlier 

implementations of the FLM rebuilt the whole structure at each step of the process, thus they 

were very slow (Ledoux, 2008). However, by using a method that updates the Delaunay 

triangulation locally, this simulation is done faster and more efficient (Mostafavi and Gold, 

2004). 

This paper reviews the methods and algorithms introduced in the literature to construct the 

Delaunay triangulation of 2D and 3D points that vary over time. We use the term ‘dynamic’ 

where new points are inserted or some of the points are deleted from the point set; and the term 

‘kinetic’ or ‘moving’ is used where the position of the points change over time, i.e., the points 

are moving. 

The paper is structured as follows: Section 2 introduces the concept of Delaunay triangulation 

in more details and reviews the definitions and notions that will be used through the rest of the 

paper. Sections 3 and 4, respectively, review the methods and algorithms proposed in the 

literature to construct the Delaunay triangulation of dynamic and kinetic points in two and three 

dimensional spaces. Finally, Section 5 concludes the paper. 

As mentioned earlier, Delaunay triangulation is defined for any dimension. However, we 

limit the discussion to 2D and 3D, which are of interest in geosciences and their geometrical 

illustrations are possible. Moreover, most of the concepts and algorithms discussed are firstly 

introduced by describing their 2D counterparts, because readers are often more familiar with 

these; and most figures are shown for the 2D case as it is much simpler to understand. 

2. Delaunay Triangulation: Definition and Related Concepts and Notions 

Given a point set P in the plane, the Delaunay triangulation is a particular triangulation of the 

points in P, which satisfy the empty circum-circle property: the circum-circle of each triangle 

does not contain any other point p∈P. This structure for a set of 3D points is the 

tetrahedralization of the points in which the circum-sphere of each tetrahedron does not contain 

any other point of the point set. Figure 1 shows Delaunay triangulation of some 2D and 3D 

points. 
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(a) (b) 

Figure 1. 2D and 3D Delaunay triangulations (a) Some of the circum-circles are drawn (b) One of the 

tetrahedra is highlighted. 

There are several algorithms to construct the Delaunay triangulation of a set of points in 

different dimensions. Based on the paradigm used, they can be classified into incremental 

(Bowyer, 1981; Edelsbrunner and Shah, 1992; Field, 1986; Joe, 1991; Lawson, 1977; Mucke, 

1988; Watson, 1981), divide and conquer (Cignoni et al., 1998), and sweepline (Fortune, 1987) 

algorithms. There are also some other algorithms such as wrapping (Dwyer, 1991; Maus, 1984; 

Tanemura et al., 1983) and convex hull based (Brown, 1979; Edelsbrunner and Seidel, 1986) 

algorithms. For more information and comparison, see (Su and Drysdale, 1997). 

2.1. Voronoi Diagram (VD) 

Related to Delaunay triangulation, the Voronoi Diagram (VD) of a set of points is defined as 

follows: Let P be a set of points in an n-dimensional Euclidean space R
n
. The Voronoi cell of a 

point p∈P, called Vp(P), is the set of points x∈R
n that are closer to p than to any other point in 

P: 

 

(1) Vp (P) = {x∈R
n
 | ||x-p|| ≤ ||x-q||, q∈P, q ≠ p} 

 

The union of the Voronoi cells of all points p∈P form the Voronoi diagram of P, noted as 

VD(P): 

 

(2) VD (P) = U Vp (P), p∈P 

 

Figure 2 shows 2D and 3D examples. The VD is one of the most important spatial structures 

in sciences, because it is very simple and used in many real-world applications. For an 

exhaustive surveys on Voronoi diagrams and their applications, see (Aurenhammer, 1991; 

Okabe et al., 2000). 
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(a) (b) 

Figure 2. 2D and 3D Voronoi diagrams: (a) VD of a set of points in the plane. (b) Two Voronoi cells 

adjacent to each other in R3 (they share the grey face). 

Delaunay triangulation and Voronoi diagrams are dual structures: the center of circum-circles 

(-spheres) of Delaunay triangulation are the Voronoi vertices; and joining the adjacent generator 

points in a VD yield their DT. Therefore, having constructed one structure, the other one can be 

extracted automatically (Figure 3). This duality is very useful, because construction, 

manipulation and storage of the VD is more difficult than DT, so all the operations can be 

performed on DT, and the VD extracted on demand. 

 

  

Figure 3. Duality of Delaunay triangulation (solid lines) and Voronoi diagrams (dashed lines) 

2.2. Points in general position 

Generally, a set of points is said to be in general position when the distribution of these points 

does not create any ambiguity in the structures derived from the points. For DT and VD, a set of 

n-dimensional points are in general position if no n+1 points lie on the same hyperplane and no  

n+2 points lie on an n-sphere. In this paper, we suppose that the points are in general position, 

otherwise it is explicitly mentioned. 

2.3. Circum-circle property 

Given a triangle T = < a, b, c > and a point p, the circum-circle property is satisfied, if the 

point p does not lie in the circum-circle of the triangle T. Its extension to 3D, called circum-

sphere property, estates that the point p does not lie in the circum-sphere of the tetrahedron       

T = < a, b, c, d >. The following determinants are used to test the circum-circle and circum-

sphere properties for 2D and 3D cases, respectively (Guibas and Stolfi, 1985): 
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Positive values for these determinants indicate that the point p is inside, while it is outside if 

the determinants are negative. 

2.4. Star, link and ears 

For a triangulation, including DT, three concepts Star, Link and Ears are defined. They are 

introduced in this section, and will be used later. 

Star. Let v be a vertex in an n-dimensional triangulation. As Figure 4 shows, the star of v, 

denoted star(v), consists of all the simplices that contain v; it forms a star-shaped polytope. For 

example, in two dimensions, all the triangles and edges incident to v form star(v), but notice that 

the edges and vertices disjoint from v, but still part of the triangles incident to v, are not 

contained in star(v). Also, observe that the vertex v itself is part of star(v), and that a simplex 

can be part of a star(v), but not some of its facets. 

 

  
 

(a) (b) 

Figure 4. The star of a vertex v in DT: (a) 2D (b) 3D 

Link. The set of simplices incident to the simplices forming star(v), but `left out' by star(v), 

form the link of v, denoted link(v), which is a (n-1) triangulation (Figure 5). For example, if v is 

a vertex in a tetrahedralization, then link(v) is a 2D triangulation formed by the vertices, edges 

and triangular faces that are contained by the tetrahedra of star(v), but are disjoint from v. 
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(a) (b) 

Figure 5. The link of a vertex v in DT: (a) 2D (b) 3D 

Ear. Let P be a simplicial polyhedron, i.e. made up of triangular faces. An ear of P is 

conceptually a potential, or imaginary, tetrahedron that could be used to tetrahedralize P. As 

shown in Figure 6, such a tetrahedron, that does not exist yet, and can be constructed by the four 

vertices spanning either two adjacent faces, or three faces all sharing a vertex (the vertex has a 

degree of 3). The former ear is denoted a 2-ear, and the latter a 3-ear. A 3-ear is actually formed 

by three 2-ears overlapping each other. In practice, a 2-ear can be identified by an edge on P, 

because only two faces are incident to it.  

A polyhedron P will have many ears, but observe that not every ear is a potential tetrahedron 

to tetrahedralize P, as some adjacent faces form a tetrahedron lying outside P. Referring again 

to Figure 6, a 2-ear abcd is said to be valid if and only if the line segment ad is inside P; and a 

3-ear abcd is valid if and only if the triangular face abc is inside P. 

 

 

Figure 6. Perspective view of the outside of a polyhedron. Two adjacent triangular faces (e.g., in light 

grey) form a 2-ear, and three triangular faces incident to the same vertex (e.g., in dark grey) form a 3-ear. 

3. Dynamic Delaunay Triangulation 

In a dynamic set of points, the position of points is fixed, but the number of points may 

change over time: points are allowed to be inserted to or deleted from the point set. This section 

reviews the existing algorithms to insert in or delete a vertex from a Delaunay triangulation. 
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3.1. Insertion  

To insert a vertex in a Delaunay triangulation, the incremental methods proposed to construct 

the DT can be properly used. These methods insert a vertex to an existing Delaunay 

triangulation and update the data structure locally. Flipping and Bowyer-Watson algorithms are 

the two existing methods. 

3.1.1. Flipping algorithm 

This algorithm was firstly introduced by Lawson (Lawson, 1977). It is based on the fact that 

there are two possible triangulations for four points in 2D, only one of which satisfies the 

circum-circle property (Figure 7). Replacing one configuration with the other one is called 

flipping. In 2D case, it is called flip22, because there are two triangles before and after the flip 

operation. 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 7. Two possible triangulations for four 2D points. Triangulation in (b) satisfies the circum-circle 

property. 

To insert a vertex in a 2-dimensional DT using the flipping algorithm, the triangle of the DT 

that contains the new vertex is detected (Figure 8.b) and it is replaced with three new triangles 

that passes through the new vertex (Figure 8.c). The new triangles are pushed in a stack and 

each time, an element of the stack is checked against the circum-circle property. If this property 

is not satisfied, then the triangle and its adjacent are flipped and the new triangles are pushed in 

the stack. This process repeats till there is no element left in the stack (Figure 8.d to 8.h).  

Joe (1991) extended the flipping algorithm to 3D. While this extension is based on 

generalizing the concept of flipping, this concepts is completely different in 3D (Joe, 1989; Joe, 

1991; Lawson, 1986). To tetrahedralize five 3D points, there are two possible solutions: one has 

two tetrahedra and the other has three (Figure 9). Flipping between the two configurations are 

called flip23 and flip32, regarding the number of tetrahedra exist before and after the flip 

operation. Moreover, according to the geometry of a tetrahedron in the DT with its adjacent, it is 

not always possible to perform a flip (in such cases, the flip is performed by a later element in 

the stack). For more information, see (Edelsbrunner and Shah, 1992; Ledoux, 2007; Shewchuk, 

2003). 

 

flip22 
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(a)  (b)  (c)  

      

(d)  (e)  (f)  

      

(g)  (h)  (i)  

Figure 8. Flipping algorithm to insert a vertex in a DT: (a) Initial DT and the new vertex. (b) Detecting 

the triangle that contains the new vertex and (c) inserting the new vertex into it. (d) to (h) Checking the 

circum-circle property and applying flipping if required. (i) new DT that contains the inserted vertex 

(Ledoux, 2007). 

 

  

(a) (b) 

Figure 9. Two possible tetrahedralizations for five 3D points. 

 

flip23 

flip32 
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3.1.2. Bowyer-Watson algorithm 

To insert a vertex in a 2-dimensional DT using the Bowyer-Watson algorithm, all the 

triangles that violate the circum-circle property, i.e., whose circum-circle contains the new 

vertex (Figures 10.a), are deleted from the construction (Figures 10.b). This creates a hole, 

which is filled by new triangles that are created by joining the new vertex to each edge of the 

boundary of the hole (Figures 10.c) (Bowyer, 1981; Kanaganathan and Goldstein, 1991; 

Watson, 1981). 

For 3-dimensional DT, the procedure is completely the same: after each insertion, all the 

tetrahedra whose circum-sphere contains the new vertex are deleted, and the hole is filled by 

new tetrahedra that are created by joining the new vertex to each triangle of the boundary of the 

hole (Field, 1986; Watson, 1981). Although it is much more easier than flipping algorithm to 

implement, it is very sensitive to round-off errors, and thus it is not robust (Ledoux, 2006). 

 

   

(a) (b) (c) 

Figure 10. Inserted vertex, indicated as white, is added to DT: (a) and (b) all triangles whose circum-

circle contains the new vertex are detected and deleted (c) Hole is filled by new triangles, which are 

created by joining the new vertex to each edge of the boundary of the hole (Ledoux 2006) 

3.2. Deletion 

Deleting a vertex v from DT can be considered as the inverse problem of inserting a vertex in 

a DT. General understanding is that the vertex v and all the triangles incident to v are removed 

and the created hole is re-triangulated (Figure 11). 

 

   

(a) (b) (c) 

Figure 11. Deleting a vertex v from a DT (a) DT Before deletion (b) The hole created by deleting the 

incident triangles (c) Re-triangulating the hole (Ledoux et al., 2005) 

 

v 
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Heller (1990) proposed an algorithm to delete a vertex from a 2-dimensional DT. In his 

algorithm, the ears of the vertex v (triple neighboring vertices that form a potential or imaginary 

triangle) are examined in anti-clockwise order (Figure 12.b) and the one with the smallest 

circum-circle (Figure 12.c) is flipped with its adjacent triangle with which it share a link edge 

(Figure 12.d). This reduces the number of neighbors of v by one. The process is repeated until 

only three triangles left (Figure 12.e). Then, v is removed and the three triangles merged into 

one (Figure 12.f) (Heller, 1990). 

 

      

(a) (b) (c) 

      

(d) (e) (f) 

Figure 12. Heller algorithm to delete a vertex, indicated as white, from a DT (a) The initial DT. (b) 

Circum-circles of the triple neighboring vertices that form an imaginary triangle. (c) and (d) Flipping the 

imaginary triangle with the smallest circum-circle with its adjacent triangle. (e) Repeating the process 

until only three triangles left. (f) Removing the vertex and merging the three triangles into one. 

Heller assumption was that among all the potential ears, the one with the smallest circum-

circle has no other vertex inside and so could become a real triangle. However, Dellivers (2002) 

showed, through a counter-example, that this assumption is wrong. Instead, he suggested 

ordering the ears (imaginary triangles) based on the power of the vertex to be removed with 

respect to that ear. This parameter is computed as follow (Devillers, 2002): 

 

(4) 
( , , , )

( , , , )
( , , )

H a b c v
power a b c v

D a b c

< >
< > =  

 

where 
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It is proved that Dellivers algorithm works for any dimensions ((Devillers and Teillaud, 

2003). However, as we stated earlier in Section 3.1.1, not every polyhedron can be 

tetrahedralized. Devillers and Teillaud (2003) used perturbations to solve this problem (for more 

details, see (Devillers and Teillaud, 2003)). 

Mostafavi et al. (2003) proposed an algorithm that does not apply any order on the imaginary 

triangles. Instead, they test the imaginary triangles one by one, and if it is a valid imaginary 

triangle, it is flipped with its adjacent. An imaginary triangles T=(v1, v2, v3) is invalid if: 

• D(v1, v2, v3) is negative. It means that T forms a re-entrant, not an ear. 

• D(v1, v3, v) is negative, where v is the vertex to be deleted. It means that T encloses v. 

• H(<v1, v2, v3>, x) is positive for at least one of the neighboring vertices x. It means that 

there is, at least, one neighboring vertex that lies inside the circum-circle of T. 

 

Although this algorithm is simpler, it becomes less efficient as the number of neighbors 

increases. However, this algorithm is equally efficient up to eight neighbors, which is mostly the 

case. Moreover, point deletion often has the potential to break down in degenerate cases due to 

the limitations of floating-point precision, but this algorithm was checked against some nasty 

cases and it worked without any problem (Mostafavi et al., 2003). 

To extend this algorithm to 3D, recall that there are two types of ears in 3D: 2-ears and 3-

ears. Let P be a polyhedron that is made up of triangular faces. A 2-ear is formed by two 

adjacent triangular faces abc and bcd sharing edge bc (Figure 13.a); and a 3-ear is formed by 

three adjacent triangular faces abd, acd and bcd sharing vertex d (Figure 13.b). A 2-ear is valid 

if and only if the line segment ad is inside P; and a 3-ear is valid if and only if the triangular 

face abc is inside P. In the case of the deletion of a vertex v in a DT, P is a star-shaped 

polyhedron star(v). An ear of star(v) is valid if it is convex outwards from v. 
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(a) (b) 

Figure 13. (a) 2-ear (b) 3-ear 

Now, to delete a vertex v from a 3-dimensional DT, all the ears of star(v) are built and stored 

in a simple list. An ear e from the list (any ear) is popped. The ear e is flipped if respects these 

three conditions: e is valid, flippable and locally Delaunay (Ledoux et al., 2005). For more 

details on a flippable tetrahedron, see (Ledoux, 2007). An ear e is locally Delaunay if its 

circum-sphere does not contain any other points on the boundary of star(v). 

Another approach suggested by Schaller and Meyer-Hermann (2004) moves the vertex to be 

deleted towards its nearest neighbor gradually and update the data structure until the simplices 

between the two vertices are very flat and can be clipped out of the triangulation without 

harming its validity. Figure 14 illustrates the idea of the algorithm. The updates are performed 

using the existing algorithms for kinetic DT, which will be presented in the next section. The 

main questions to be answered all reduce to the problem of the step size. 

 

   

(a) (b) (c) 

Figure 14. Delete a vertex from a DT: (a) The vertex to be deleted (large hatched point) is moved 

gradually toward it nearest neighbor (large solid point) and the DT is updated by flipping when required. 

(b) The movement continues until the inner simplices (shaded region) can be safely deleted. (c) The two 

vertices are simply merged and the remaining opposing simplices are connected as neighbors. 

4. Kinetic Delaunay Triangulation 

A kinetic or moving point is a point whose position changes over time, i.e., it is a function of 

time:  

 

(6) P = (p1, p2, …, pn) = (f1(t), f2(t), …, fn(t)) 
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4.1. Intuition: Delete and re-insert 

Once insertion and deletion of a point have been implemented for a data structure, the 

intuitionistic approach to handle a moving point is that the point is gradually deleted from the 

current position and re-inserted at the new position; after each deletion and insertion, the data 

structure is updated. Although it is a very simple approach, it is computationally expensive, 

because several unnecessary deletions and insertions are performed.  In other words, a point is 

deleted and re-inserted, no matter if this movement affects the topology of the data structure. 

This approach nevertheless is an appropriate solution for many applications where the 

intermediate states are not important (just the start and end states are of interest): the point is 

deleted from the start and re-inserted at the end. 

4.2. Flip-based approach 

De Fabritiis and Coveney (2003) modify this approach to move the points in a DT: they 

gradually move the points toward their destinations. After each movement, the triangle that 

violate the circum-circle property are detected and flipped. In 2D, each triangle T is checked 

with all of its neighbors. If the opposite vertex of a neighbor T' lies in the circum-circle of T, 

then T and T' are flipped and put in a stack to be checked with their new neighbors. This process 

continues until there is no element left in the stack. 

Extension of this method to 3D needs two types of check, because two types of flips (flip23 

and flip32) are possible (Schaller and Meyer-Hermann, 2004): 

• Each tetrahedron T is checked with its neighbor T' and a flip23 is performed if the 

following two conditions are met: 

- The opposite vertex of the neighbor T' lies within the circum-sphere of T. 

- The five union vertices of T and T' form a convex polyhedron. 

• Each tetrahedron T is checked with two of its neighbors T1 and T2 and a flip32 is 

performed if the following two conditions are met: 

- All of the pairs TT1, TT2 and T1T2 violate the circum-sphere property. 

- T1 and T2 are also respective neighbors. 

 

Another extension of this approach to 3D is that instead of performing a sequence of flips on 

the tetrahedra in order to locally restore the circum-sphere property, the validity of this property 

is checked for all the tetrahedra. The points for which this property fails are moved back to the 

preceding position and then “delete and re-insert” is applied (De Fabritiis and Coveney, 2003). 

The advantage of the flip-based approach to the “delete and re-insert” is that a simple check 

is applied on all elements (triangles or tetrahedra here), but further operations (i.e., flip and 

delete and re-insert) are applied only when it is required. However, the main drawback is still 

there: This method uses a fixed time step to move all of the point, no matter if this movement 

affects the topology of the data structure. Moreover, flips cannot be used to recover from an 
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invalid triangulation. This becomes an issue when computing a maximum step size for all of the 

moving vertexes. 

4.3. Events-based approaches 

Event-based approaches are based on the concept of topological events, which is defined as 

follows: 

“For a data structure D consists of moving elements S, a topological event t is the 

moment when the movement of elements S change the topological structure in D”. 

 

Based on this concept, to handle moving a point in a data structure, the topology of the data 

structure is updated at topological events; elsewhere, only the geometry of the data structure is 

modified, which does not need any computation. 

Let p be a vertex in a Delaunay triangulation DT and P be the set of its neighboring points, in 

clock-wise order. Let Tr be the set of opposite triangles (tetrahedra in 3D) of p, i.e., neighbors of 

incident triangles (tetrahedra in 3D) to p , and Ti be the set of imaginary triangles (tetrahedra in 

3D) that could be drawn from three (four in 3D) successive elements of P (Figure 15). Then, the 

topological events of DT caused by the point p are defined as follows (Albers et al., 1998; 

Ledoux, 2008; Mostafavi, 2002; Roos, 1991): 

• If p moves in the circum-circle (-sphere in 3D) of an element of Tr (Figure 16), a flip is 

performed and the new triangles (tetrahedral in 3D) are updated (i.e., they are checked 

with their neighbors against the circume-circle (-sphere in 3D) property). 

• If p moves out of the circum-circle (-sphere in 3D) of an element of Ti (Figure 17), a 

flip is performed and the new triangles (tetrahedral in 3D) are updated. 

 

 

 

Figure 15. Hashed triangles are the opposite triangles of p. Shaded triangle is one of the imaginary 

triangles that could be drawn from three successive neighbors of p. 

 

p 
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(a)  (b)  (c)  

Figure 16. (a) The white point moves in the circum-circle of an opposite triangle. (b) The two triangles 

are flipped. (c) Final DT 

 

      

(a)  (b)  (c)  

Figure 15. (a) The white point moves out of the circum-circle of an imaginary triangle (b) The two 

triangles are flipped. (c) Final DT 

 

Roos (1991) proposed an algorithm to update a 2-dimensional DT based on the concept of the 

topological events. All the topological events for all the quadrilaterals (pair of adjacent triangles 

in DT) are computed and put in a priority queue, sorted according to the time they will arise. 

The time is computed by finding the zeros of the circum-circle equation developed into a 

polynomial.  Then, the first topological event is popped from the queue, the DT is modified with 

a flip22, and the queue is updated, because the flip has changed locally some triangles. The 

algorithm continues until there are no topological events left in the queue (Guibas et al., 1992; 

Roos, 1991; Roos, 1993; Roos and Noltemeier, 1991). Similar algorithms have been proposed 

in (Bajaj and Bouma, 1990; Imai et al., 1989). 

This algorithm has been extended to 3-dimsnioanl DT in (Albers, 1991; Albers et al., 1998; 

Albers and Roos, 1992). However, it is not very efficient in 3D, because calculating the zeros of 

the circum-sphere equation cannot be done analytically, as is the case for the circum-circle 

equation (Gavrilova and Rokne, 2003; Vomacka, 2008). Indeed, the polynomial for the 3-

dimensional case has a high degree (8th degree) and iterative numerical solutions must be 

sought. That results in a much slower implementation, and it could also complicate the update 
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of the DT when the set of points contains degeneracies. Guibas et al. (2004) proposed a generic 

framework for handling moving objects that uses fixed precision and exact arithmetic to find the 

topological events. They claim that using their method to find the zeros of polynomials (circum-

sphere) is relatively fast in most cases (Guibas et al., 2004). 

Mostafavi (2001) propose a different algorithm and give more implementation details. He 

focuses on the operations necessary to move a single point p, and then explain how to move 

many points. In this algorithm, the topological events caused by a single point p are detected by 

intersecting the trajectory of the point p with the opposite and imaginary circum-circles, which 

were explained above (Gold, 1990; Gold et al., 1995; Mostafavi, 2002; Mostafavi and Gold, 

2004). This algorithm has been equally extended to 3-dimensional DT in (Ledoux, 2008). 

5. Conclusions 

This paper reviews the methods and algorithms introduced in the literature to construct the 

Delaunay triangulation of 2D and 3D dynamic point sets (where the points are added or deleted) 

and kinetic point sets (where the position of the points vary over time). Static DT has been used 

in geosciences for many years to model the real world objects. However, dynamic kinetic DT 

are essential and for simulating the real world processes.  

Although some of the methods and algorithms introduced were very efficient and smart-

designed, there are applications for which the elementary methods works better, in terms of 

complexity. In other words, the “best” algorithm differs from an application to another. 

The current approach in extending spatial analyses to higher dimensions (e.g., 2D dynamic, 

2D moving, 3D dynamic and 3D moving) is developing a technical solution to extend spatial 

analyses to a new multi-dimensional space, with least increase in complexity and speed. These 

are the parameters to evaluate the efficiency of algorithms in computational geometry.  

Although there are successful results for this aim (as we saw in the paper), the issue of this 

approach is that the extension techniques are highly dependent on the specific case studied. It 

has resulted in developments which cannot be generalized. In other words, a technique used to 

extend a 2D spatial analysis to a higher dimensional space may not be usable for another spatial 

analysis, nor to extend the same spatial analysis to another higher dimensional space. The result 

of following such approaches in the software development stage is recoding each spatial 

analysis for each dimension. This is not a promising approach to extend all of the required 

spatial analyses in a practical field of study like geosciences, where several spatial analyses 

need to be extended. We are working on a principled method to extend 2D spatial analyses to 

higher dimensions, independent of the analyses at hand, with a minimum amount of recoding 

(Karimipour and Delavar, 2008; Karimipour et al., 2008; Karimipour et al., 2010; Karimipour et 

al., 2008; Karimipour et al., 2006). 
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