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Chapter 1

Introduction

An embedded computer system is a special-purpose computer system designed to

perform a small number of dedicated functions, often with real-time computing con-

straints. The products containing embedded systems span from day-to-day household and

consumer products, such as digital TVs, mobile phones, and automobiles, to industrial de-

vices and equipment, including, for example, robots, aviation equipment, paper making

machines, machine tools, and high end military and scientific devices (e.g., aircraft, CAT

scanners and ultra sound machines). Specific applications used in the final research re-

port include real-time system applications of reconfigurable video coding (RVC) [2] and

model predictive control (MPC) [3].

Previously, because embedded systems were highly limited in computation capa-

bility, memory size, and power consumption constraints, much research was dedicated to

making the best use of limited system resources. Examples include techniques for en-

ergy efficient system design [4] and memory size efficiency [5]. In these works, system

performance issues, such as execution time, were traded off with system resources, and

resources were carefully scheduled and utilized. With more available computational capa-

bility in embedded system devices, and more complicated requirements demanding more

intensive computation, the most critical design concerns are changing in some important

application domains. In such application areas, researchers are paying more and more
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attention to improving system execution time, which is also the core topic of our work.

Execution time is especially critical to real time systems, in the sense that it is related not

only to system performance, but also to system correctness and reliability.

Benefiting from economies of scale and development of chip technology, there has

been a dramatic rise in processing power and functionality since the early applications

in the 1960s and what’s more, embedded systems have come down in price. Besides

the well developed single-processor-on-chip, embedded system designs based on paral-

lel processing units have been emerging in recent years, including multiprocessors and

multicore processors. The latter are attracting more and more attention because of their

powerful computation capability and fast synchronization among cores. Our research

work explores the systematic exploitation of parallelism in embedded applications, which

benefits embedded system performance.

In general, the process of developing an embedded system is divided into two

phases: design and implementation. The system is first designed at a high level of ab-

straction based on requirements from users and product designers. The high level design

is then mapped into an implementation on the targeted processing platform. Our work

not only explores the dataflow based modeling techniques, but also explores techniques

for system-level analysis and optimization that help to bridge the gap between high-level

models and efficient implementations.

Dataflow modeling techniques underlie many popular graphical tools for digital

signal processing (DSP) system design (e.g., see [6]). There are different languages and

techniques developed in the area of dataflow based design. Our work develops novel

methods in the context of the Dataflow Interchange Format (DIF) [7], which is a language
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for specifying dataflow graphs in terms of subsystems that conform to different kinds of

specialized dataflow modeling techniques, and the DIF Package (TDP), which is a tool

for analyzing DIF language specifications, with emphasis on scheduling. Although we

use DIF and TDP to experiment with and demonstrate our methods, the core methods

can be adapted to a wide variety of other dataflow-based design environments — i.e., the

underlying concepts are not specific to DIF or TDP.

The rest of report is organized as follows: Chapter 2 focuses on the detection of

SDF-like regions in dynamic dataflow descriptions — in particular, in the generalized

specification framework of CAL. This is an important step for applying static schedul-

ing techniques within a dynamic dataflow framework. Our techniques combine the ad-

vantages of different dataflow languages and tools, including CAL [8], DIF [7] and

CAL2C [9]. Chapter 3 presents an in-depth case study on dataflow-based analysis and

exploitation of parallelism in the design and implementation of an MPEG RVC decoder.

Because dataflow models are effective in exposing concurrency and other important forms

of high level application structure, dataflow techniques are promising for implementing

complex DSP applications on multi-core systems, and other kinds of parallel processing

platforms. Furthermore, segmenting a system into SDF-like regions also allows us to

explore cross-actor concurrency that results from dynamic dependencies among different

regions. Using SDF-like region detection as a preprocessing step to software synthesis

generally provides an efficient way for mapping tasks to multi-core systems, and improves

the system performance of video processing applications on multi-core platforms. Chap-

ter 4 describes a general framework called reactive, control-integrated dataflow modeling

for analyzing and improving algorithms used for MPC and their hardware implemen-
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tations. Our work describes modeling and analysis tools to facilitate implementing the

MPC algorithms on parallel computers, thereby greatly reducing the time needed to com-

plete the calculations. The use of these tools is illustrated by an application to a class of

MPC problems. A summary of current progress and future work to explore parallelism

are described in Chapter 5.

Our research work explores systematic exploitation of parallelism in embedded

computing systems. From system design to hardware implementation, parallelism can

be explored in a hierarchical way. By operating at a high level of abstraction and tak-

ing into account different levels and forms of parallelism in a unified way, our methods

have the potential for significant performance impact compared to conventional methods,

which are often restricted to specialized modes of parallel processing. Simulation and ex-

perimental results show that our method can deliver significant improvements in system

performance.
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Chapter 2

Exploiting Statically Schedulable Regions

2.1 Overview

Dataflow-based programming is employed in a wide variety of commercial and

research-oriented tools related to DSP system design. Synchronous dataflow (SDF) is a

specialized form of dataflow that is streamlined for efficient representation of DSP sys-

tems [10]. SDF is a restricted model that handles a limited sub-class of DSP applications,

but in exchange for this limited expressive power, SDF provides increased potential for

static (compile-time) optimization of DSP hardware and software (e.g., see [11]).

Since the introduction of SDF, a variety of more general dataflow models of com-

putation have been proposed to handle broader classes of DSP applications. These al-

ternative modeling approaches provide different trade-offs among expressive power, op-

timization potential, and intuitive appeal. In general, they provide enhanced expressive

power, but cannot directly utilize static scheduling techniques, such as those that have

been developed for SDF.

A variety of dataflow-based languages and tools have been developed for design and

implementation of embedded DSP systems. For example, CAL [8] is a language for spec-

ifying dataflow actors in a way that is fully general (in terms of expressive power), while

clearly exposing functional structures that are useful in detecting important special cases

of actor behaviors (e.g., SDF or SDF-like actor behaviors). The CAL language, in terms
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of its high level of abstraction, is similar to the Stream-Based Functions (SBF) model of

computation [12]. Both models share common points to describe dynamic systems, such

as input/output ports in CAL and read/write ports in SBF, actions in CAL and functions

in SBF, and internal states in both models. However, SBF combines the sematics of both

dataflow models and process network models, while CAL extends the dataflow model by

enriching the properties of single actors. In general, CAL is a fully-featured program-

ming language, providing both an abstract, dataflow model of computation as well as a

comprehensive set of operators and other semantic features for completely specifying the

internal behavior of dataflow components.

DIF [7] is a language for specifying dataflow graphs in terms of subsystems that

conform to different kinds of specialized dataflow modeling techniques, and The DIF

Package (TDP) is a tool for analyzing DIF language specifications, with emphasis on

scheduling- and memory-management-related analysis techniques [7]. CAL2C [13, 9]

is a tool that performs automatic generation of C code from CAL networks, thereby pro-

viding a direct bridge between CAL and off-the-shelf embedded processing platforms.

CAL2C is now part of Open RVC CAL Compiler (Orcc). Orcc is described in [14] and

can be downloaded from [15].

In this chapter, we explore an integration of CAL, TDP, and CAL2C, including the

introduction of new models and analysis methods to formally link these tools. Through

this linkage, we develop novel methods for quasi-static scheduling of dynamic dataflow

graphs. Here, by quasi-static scheduling, we mean scheduling techniques in which a sig-

nificant proportion of scheduling decisions are fixed at compile time — thereby promot-

ing predictability and optimization — and integrated with a relatively small proportion
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of dynamic scheduling decisions, which provide for increased generality and run-time

adaptibility compared to fully static scheduling.

More specifically, we introduce the concept of a Statically Schedulable Region

(SSR) in a dataflow graph, and demonstrate the utility of this concept in quasi-static

scheduling. We also propose an automated method to detect SSRs, using the TDP tool, in

DSP applications that are modeled by the CAL language. The efficiency of quasi-static

schedules built from SSRs is demonstrated by evaluating synthesized C-code implemen-

tations that are generated using CAL2C.

After extracting SSRs from a dynamic CAL network, we can take advantage of

existing SDF scheduling methods to schedule the different SSRs. More specifically, in

this chapter, we introduce the concept of an SSR actor, which is a subsystem within an

SSR that can be treated as an SDF actor for purposes of scheduling. In terms of the

components in the original CAL specification, an SSR actor may correspond to a single

CAL actor or part of (a subset of the functionality within) a CAL actor. Scheduling based

on SSR actors is thus of significantly more general applicability compared to conventional

SDF scheduling, where SDF actors in the original specification are treated as indivisible

“black boxes”.

SSRs, together with their application to static and quasi-static scheduling, benefit

not only sequential implementations, but also implementations on parallel processing sys-

tems, such as multi-core processors. Along with our method for automatically deriving

SSRs, we propose an SSR-based transformation technique for mapping dynamic CAL

networks onto multi-core platforms. We demonstrate that our techniques result in signifi-

cant improvments in system performance compared to conventional actor-based mapping
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approaches.

This chapter is organized as follows. Section 2.2 introduces previous work related

to dataflow models, the CAL language, and related efforts on extracting SDF-like parts

from dynamic dataflow models. Section 2.3 outlines our methods and notations for trans-

lation and analysis across different modeling languages. In Section 2.4, we introduce

the concept of SSRs, and develop a detailed procedure for deriving SSRs from CAL net-

works. Section 2.5 defines the concept of SSR actors, and describes how this special

class of SSRs can help in exploiting existing SDF scheduling techniques and tools within

a dynamic dataflow context. Simulation results on an IDCT module are also presented

in this section. Section 2.6 explores methods to implement CAL networks based on the

concept of weakly-connected SSRs. Simulation results on an MPEG-4 RVC SP decoder

are presented in this section.

2.2 Related Work

2.2.1 Dataflow

Since the mid 1980s, a class of graphical program representations has been evolving

steadily, and gaining increasing acceptance among designers of digital signal processing

(DSP) systems. Foundations for such dataflow representations have been provided by

computation graphs [16], Kahn process networks [17], dataflow architectures [18], and

dataflow process networks [19]. Synchronous dataflow (SDF) is a specialized form of

dataflow that is streamlined for efficient representation of DSP systems [10].

Since the introduction of SDF, a variety of such DSP-oriented dataflow models of
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computation have been proposed, and DSP-oriented models have been incorporated into

many commercial design tools, including Agilent ADS, Cadence SPW (later acquired by

CoWare), National Instruments LabVIEW, and Synopsys CoCentric. Useful relationships

between dataflow and synchronous languages have also been developed, which helps to

connect DSP-oriented dataflow methods to other popular tools, such as Simulink by The

MathWorks (e.g., see [20]). Model dataflow-based tools for embedded system design

use a variety of modeling techniques, and are not necessarily restricted to SDF. These

alternative modeling approaches provide different trade-offs among expressive power (the

range of DSP applications that can be represented), analysis potential (the rigor with

which implementations can be automatically validated or optimized), and intuitive appeal

(e.g., see [21]) .

In DSP-oriented dataflow graphs, vertices (actors) represent computations of arbi-

trary complexity, and an edge represents the flow of data as values are passed from the

output of one computation to the input of another. Each data value is encapsulated in an

object called a token as it is passed across an edge. Actors are assumed to execute iter-

atively, over and over again, as the graph processes data from one or more data streams.

These data streams are typically assumed to be of unbounded length (e.g., derived im-

plementations are not dependent on any pre-defined duration for the input signals). In

dataflow graphs, interfaces to input data streams are typically represented as source ac-

tors (actors that have no input edges). An important task when mapping dataflow graphs

into implementations is that of sequencing and coordinating among actors based on the

resource constraints of the target platform. This task is referred to as scheduling.

A simple example is illustrated in Figure 2.1. Here, A and B represent two actors,
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and the numbers shown above the edges represent the rates at which actors produce and

consume tokens. For example, A produces two tokens every time it executes and B con-

sumes three tokens during each execution. How token production and consumption rates

are represented, and underlying restrictions imposed on such rates are key distinguishing

characteristics of many DSP-oriented dataflow models. In SDF, all data production and

consumption rates are restricted to be constant values that are known at design time. The

example of Figure 2.1 conforms to the SDF model.

A limitation of SDF and related models, such as cyclo-static dataflow [22] and

homogeneous SDF (HSDF) [10], is that dynamic dataflow relationships among compu-

tations cannot be described. To express applications that involve such relationships, one

must employ models that are more expressive than such static dataflow models. Ear-

lier work on DSP-oriented dataflow models has focused heavily on static dataflow tech-

niques, especially SDF. As designers seek to develop more and more complex embedded

DSP systems, incorporating more flexible sets of features, and more powerful forms of

adaptivity, exploration of dynamic dataflow models is becoming increasingly important.

A variety of dynamic dataflow modeling techniques have been developed previ-

ously, including the token flow model [23], stream-based functions [12], enable-invoke

dataflow (EIDF) [24], and the CAL actor language [8].

   A    B2 3

   C

   D

   E
2

1

3
2

1

2

1
2

Figure 2.1: A simple example of a dataflow (SDF) model.
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2.2.2 DIF

The dataflow interchange format (DIF) is proposed as a standard approach for spec-

ifying and integrating arbitrary dataflow-based semantics for DSP system design [25].

The DIF package (TDP) [7, 24] is a software tool, developed in conjunction with DIF, for

modeling and analyzing DSP-oriented dataflow graphs. The DIF language (TDL) is an

accompanying textual design language for high-level specification of signal-processing-

oriented dataflow graphs. The TDL syntax for dataflow graph specification is designed

based on dataflow theory and is independent of any specific design tool. For a DSP appli-

cation, the dataflow semantic specification is unique in TDL regardless of the design tool

used to originally enter the specification.

Because dataflow-oriented design tools in the signal processing domain are funda-

mentally based on actor-oriented design, TDL provides a syntax to specify tool-specific

actor information, which ensures that TDP can extract all relevant information from a

given design tool [25].

TDL is designed as a standard approach for specifying DSP-oriented dataflow graphs

at a high level of abstraction that is suitable for both programming and interchange. TDL

provides a unique set of semantic features for specifying graph topologies, hierarchical

design structure, dataflow-related design properties, and actor-specific information. TDP

accompanies TDL, and provides a variety of intermediate representations, analysis tech-

niques, and graph transformations that are useful for working with datalfow graphs that

have been captured by TDL. Mocgraph is a companion tool that is provided along with

TDP. Mocgraph can be viewed as a library of algorithms and representations for working
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with generic graphs, whereas TDP is a specialized package for working with dataflow

graphs. For more details on TDL, TDP, and Mocgraph, we refer the reader to [7, 24].

For example, TDP includes a transformation that converts SDF representations into

equivalent homogeneous SDF (HSDF) representations based on the algorithm introduced

in [10]. Such a transformation can in general expose additional concurrency [26] that

is not represented explicitly in the orignal SDF graph. In this chapter, we make use of

both generic-graph-based (via Mocgraph) and model-based (via TDP) analysis methods

to automatically derive and exploit SSRs from within CAL networks. As we will demon-

strate later in this chapter, such extraction and exploitation of SSRs provides a powerful

new methodology for optimized implementation of datalfow graphs. In comparison, [26]

presents in-depth dataflow based analysis and exploitation of parallelism in the design

and implementation of an MPEG RVC decoder, while this chapter focuses on detailed

description of the SSR detection algorithm.

Compared to other design tools for representation and transformation of dataflow

graphs — such as SysteMoC [27], PeaCE [28], and stream-based functions [12] — a

distinguishing feature of TDP is its support for representing and manipulating different

specialized forms of dataflow semantics. This arises from the emphasis in TDL on rec-

ognizing a wide variety of important forms of dataflow semantics along with relevant

modeling details that are required to meaningfully analyze those semantics. Due to this

feature of TDP, its capabilities are highly complementary to those of existing dataflow-

based frameworks. In particular, TDL and TDP can be used to capture and analyze,

respectively, representations from many of these frameworks.
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2.2.3 CAL and Scheduling of CAL Systems

CAL is a dataflow- and actor-oriented language that describes algorithms in terms

of networks of communicating dataflow-actor components. A CAL actor is a modular

component that encapsulates its own state. The state of an actor is not shareable with

other actors, and thus, an actor cannot modify the state of another actor.

The behavior of an actor is defined in terms of a set of actions. The operations an

action can perform are consumption (reading) of input tokens, modification of internal

state, and production (writing) of output tokens. The topology of the connections among

actor input and output ports constitutes what is called a CAL network. Compared to the

complexity of actors, edges — connections between pairs of actors — are rather simple.

The only interaction an actor can have with another actor is through input and output ports

that connect the actors. Such connections are represented as edges in a CAL network.

Each action of an actor defines the kinds of transitions that internal states can un-

dergo, and the specific conditions under which the action can be executed (fired). The

conditions for firing actions in general involve (1) the availability of input tokens, (2) val-

ues of input tokens, (3) state of the actor, and (4) priority of the action. In an actor, actions

are executed sequentially — i.e., at most one action can be executing at any given time.

CAL is supported by a portable interpreter infrastructure that can simulate a hier-

archical network of actors. In addition to the strong encapsulation afforded by the actor

description, the dataflow model also makes much more algorithmic parallelism explicit.

This allows application of the wide range of dataflow graph transformations to the real-

ization of signal processing systems on a variety of platforms. In particular, platforms
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will differ in their degree of parallelism, which gives rise to the challenging problem of

matching the concurrency of the application representation with the parallelism of the

computing machine that is executing it. The newly developed MPEG video coding stan-

dard, Reconfigurable Video Coding (RVC) [29], uses the CAL actor language [8] for

specifying functional components, and dataflow as the composition formalism [30].

An integrated set of tools related to CAL are presented in OpenDF [31]. Among

these, we are especially interested in the available code generators that translate CAL into

C or hardware description language (HDL) code.

However CAL models themselves are too general to be scheduled efficiently through

any sort of direct mapping. In a direct mapping from CAL semantics, the scheduling of

actor functions is resolved only at run-time, such as through the SystemC-based schedul-

ing approach that is used in CAL2C. A number of related efforts are underway to de-

velop efficient scheduling techniques for CAL networks. The approach of Platen and

Eker [32] sketches a method to classify CAL actors into different dataflow classes for

efficient scheduling. Boutellier et al. [33] propose an approach to quasi-static multipro-

cessor scheduling of CAL-based RVC applications. The approach involves the dynamic

selection and execution of “piecewise static schedules” based on novel extensions of flow

shop scheduling techniques.

Many previous research efforts have focused on task mapping for multiprocessor

systems from other kinds of specification models or languages (e.g., see [21]). For ex-

ample, Li et al. [34] provide a method for allocating and scheduling tasks using a hybrid

combination of genetic algorithm and ant colony optimization. The approach involves

consideration of both global and local memory spaces across the targeted multiprocessor
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system. Ennals et al. [35] develop a method for partitioning tasks on multi-core network

processors.

Compared to prior work on dataflow techniques and multiprocessor system design,

major unique aspects of our approach in this chapter are the capability to decompose

CAL actors based on their formal action- and port-based semantics, and to construct and

subsequently transform SSRs and SSR actors from these decomposed representations.

As a result, our methodology has access to and is capabile of exploiting the detailed

formal modeling semantics of the CAL language, which includes formal modeling of

both communication between actors, as well as computations and state transitions within

actors. Additionally, our methods provide a novel framework of quasi-static scheduling

in terms of SSR actors.

2.3 Analysis Framework

Our method to optimize implementation of DSP applications combines the advan-

tages of three complementary tools, as shown in Figure 3.4. The given DSP application

is initially described as a CAL network that is composed of CAL actors. The CAL-based

dataflow representation is then translated into a DIF-based intermediate representation

for analysis by TDP. This TDP-driven analysis produces a set of SSRs, and an associated

quasi-static schedule, which is then translated into a reformulated CAL specification. This

transformed CAL code is then translated to a C code implementation using CAL2C. The

generated CAL2C implementation is optimized to exploit the static structure provided by

the SSRs and their enclosing quasi-static schedule.
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Figure 2.2: Outline of method for optimizing dataflow graph implementation.

A CAL actor can in general have two kinds of interfaces — input ports and output

ports. A CAL actor performs computations in sequences of steps, where each step is

called an action. There are one or more actions associated with a given actor, and an

invocation of an actor corresponds to exactly one action. In each action, the actor may

consume tokens from its input ports, and may produce tokens on its output ports. Also,

there can be one or more state variables associated with an actor, and these state variables

can be modified by any action.

We introduce some notation to allow for more detailed discussion of CAL seman-

tics. For simplicity, we assume here that there is exactly one state variable associated

with a given CAL actor, but this is not a general restriction of the CAL language — CAL

actors can have no state variable or multiple state variables.

A CAL actorA can be represented as a 4-tuple< σ0,Σ(A),Γ(A),�>, where Σ(A)

is the set of all possible values for the state variable; σ0 ∈ Σ(A) is the initial state; Γ(A)
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is the set of all possible actions for actor A; and � is a non-reflexive, anti-symmetric and

transitive partial order relation on Γ(A) called the priority relation of A. Intuitively, if

l,m ∈ Γ(A), then l � m means that l has priority over m if both are “competing” for the

next invocation A.

We refer to the set of ports in A as the port set of A, denoted as ports(A). For

a given action l ∈ Γ(A), the set of ports that can be affected by the action is denoted

(allowing a minor abuse of notation) by ports(A)l. In CAL, different actors can have

identically-named ports. To distinguish between identically-named ports in different ac-

tors, we prefix the name of the port with the containing actor, as in A.a and B.a. Given

a CAL actor A, inputs(A) denotes the set of input ports of A, and outputs(A) denotes

the set of output ports of A. Furthermore, given an action l ∈ Γ(A), we again em-

ploy a minor abuse of notation, and define inputs(A)l = inputs(A) ∩ ports(A)l, and

outputs(A)l = outputs(A) ∩ ports(A)l. These represent, respectively, the sets of actor

input and output ports that appear in the action l.

A guard is a condition that must be satisfied before the next action in a CAL actor

can proceed to execute. In general, a guard condition can involve the actor inputs and

actor state. If execution of an action has an associated guard condition, we say that the

action is guarded. Intuitively, an action that is not guarded executes unconditionally as

soon as it is the next action visited during the execution of the enclosing actorA. Also, we

say that an action is a state-modifying action if the action may, depending on the current

state and actor inputs, change the value of the actor state. Given a guarded action m of an

actor A, we say that m is state-guarded if the guard condition associated with m depends

on the value of the state variable associated with A.
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Describing an actor in CAL involves describing not only its ports, but also the

structure of its internal state, the actions it can perform, what these actions do (such

as token production and token consumption, and updating of actor state), and how to

determine the action that the actor will perform next.

2.4 Derivation of Statically Schedulable Regions

Our approach for deriving statically schedulable regions involves partitioning and

grouping actor ports based on relationships that pertain to various kinds of interactions

bewteen ports.

This overall process of partitioning and grouping begins at the level of individual

actors. Ports inside an actor can be viewed as having different kinds of associations with

one another. Some ports can be viewed as related because they are involved in the same

action, while some are related because they affect the same state variable. In this chapter,

we apply the following two kinds of port associations:

1. ∃(l ∈ Γ(A)) such that a, b ∈ ports(A)l;

2. ∃l,m ∈ Γ(A) such that a ∈ ports(A)l, b ∈ ports(A)m, l is a state-changing action,

and m is a state-guarded action.

We define these two conditions as the coupling relationships, and we observe that

in general, two distinct ports can satisfy zero, one or both of the coupling relationships.

Intuitively, if neither of these two conditions is satisfied by two given ports, we separate

the two ports into different partitions. If one or both of these conditions is satisfied by two

ports of the same actor, then we include the ports in the same partition.
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Given two distinct ports a and b of a CAL actor A, we say that a and b are coupled

ports if they satisfy exactly one or both of the coupling relationships.

Partitioning across ports from different actors is based on connections in the en-

closing CAL network. If ports of distinct actors are connected in the CAL network, then

they are combined into the same partition, including any other subsets of ports within the

same actors that satisfy coupling relationships with respect to the ports.

After partitioning is performed on actor ports, we perform the grouping phase of

our transformation methodology. The sets of ports obtained from partitions are grouped

together in an attempt to build larger subsets of computations that can be scheduled stat-

ically with respect to one another. In general, static scheduling methods can be used to

schedule the computations within such groups, while coordination of each group with the

rest of the CAL network can be scheduled dynamically.

There are three kinds of intermediate graphs that are constructed and analyzed dur-

ing the process of SSR derivation. Two of these are constructed separately for individual

actors, and the third intermediate graph is a representation on the overall CAL network.

Partitioning begins from individual actors. The CAL actor is originally represented

as a CAL file. The necessary information is translated into a TDL file. From the resulting

TDL file, we construct the coupling relationship graph (CRG) of an actor A by instanti-

ating a vertex vp for each port p of A, and an edge (va, vb) for each pair of coupled ports

a and b.

Figure 2.3 shows an illustration of coupled ports and CRGs. Here the CRGs for two

actors A and B are superimposed in the same graph along with edges between commu-

nicating ports of A and B. From the illustration, we see, for example, that the following
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port-pairs are coupled: {A.a,A.x}, {A.b, A.y}, {B.a,B.x}, {B.b, B.x}, and {B.c, B.y}.

a
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c

x

y
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b

c

x

y
z

A B

Coupled Ports

Figure 2.3: An illustration of coupled ports and CRGs.

The weakly connected components of the CRG for an actor A are called coupled

groups. Weakly connected components are a form of graph structure that can be derived

efficiently using well-known graph analysis techniques (e.g., see [36]). Intuitively, in an

undirected graph, two actors are in the same weakly connected component if there is a

path connecting the two actors. In a directed graph G, two actors are in the same weakly

connected component if there is a path that connects the actors in the undirected version

of G (i.e., the undirected graph that is derived from G by replacing each directed edge in

G with an undirected edge that connects the same pair of actors).

Figure 2.4 shows an example of a directed graph, the undirected version of that
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graph, the associated weakly connected components.
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Figure 2.4: An illustration of weakly connected components.

Figure 2.5 shows an illustration of coupled groups using a similar kind of overall

diagram (but based on different actors A and B) as that shown in Figure 2.3.

Once we have partitioned the ports of each actor A into its set C of coupled groups,

we examine each coupled group c ∈ C, and we try to extract from c a more specialized

kind of port-subset called a statically-related group (SRG). In particular, a set of ports

Z = {p1, p2, . . . , pn} within a given coupled group of A is a statically-related group if it

satisfies the following three conditions.

1. ∀l ∈ Γ(A), either Z ⊆ ports(A)l, or Z
⋂

ports(A)l = ∅, where ∅ denotes the

empty set.

2. Each input port pi ∈ Z is a static rate input port — that is, there exists a fixed

positive integer cns(pi,) that characterizes the number of tokens consumed from pi.
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Figure 2.5: An illustration of coupled groups.

In other words, for any l such that pi ∈ ports(A)l, we have that exactly cns(pi,)

tokens are consumed from pi during l.

3. Similarly, each output port pj ∈ Z is a static rate output port, which means that

there exists a fixed positive integer prd(pj,) that characterizes the number of tokens

produced onto pj , regardless of which “containing action” is being executed.

We say that a port is a static rate port if it is either a static rate input port or a static

rate output port.

SRGs (statically-related groups) can be derived by constructing and analyzing an

intermediate graph representation that we call the static relationship graph. Given a cou-
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pled group R = a1, a2, . . . , an, we construct the static relationship graph of R by first

instantiating a vertex xai
for each ai ∈ R such that ai is a static rate port, and a vertex vz

for every action z in the actor. We then instantiate an edge (xai
, vz) for every ordered pair

(ai, z) such that ai ∈ ports(z). By definition, the static relationship graph is a bipartite

graph. Figure 2.6 shows an example of a static relationship graph and the statically-related

groups derived from Figure 2.5.
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Figure 2.6: An illustration of statically-related groups.

The SRGs of an actor can be derived by computing the weakly connected compo-

nents of the static relationship graph — each weakly connected component of the static

relationship graph is an SRG.

Once the SRGs have been determined, we construct another intermediate graphical
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representation, which we call the SRG graph. SSR detection then operates directly on the

SRG graph.

Before defining the SRG graph, however, it is useful to define the concept of con-

nectivity between SRGs. Given two SRGs A1 and A2, we say that A1 and A2 are con-

nected if there exist ports p1 and p2 such that p1 ∈ A1, p2 ∈ A2, and p1 and p2 are

connected by an edge in the enclosing CAL network (i.e., p1 and p2 are communicating

ports in the overall CAL specification).

The process of SRG graph construction can now be described as follows. We con-

struct the SRG graph of a given CAL network by instantiating a vertex vS for each SRG

S in the graph, and instantiating an edge vS, vT for every pair S, T of SRGs that are

connected.

Once the SRG graph has been constructed, the SSRs (statically schedulable regions)

can be derived through another computation of weakly connected components. In particu-

lar, suppose thatX1, X2, . . . , Xn are the weakly connected components of the SRG graph.

Thus, from the definitions of the SRG graph and weakly connected components, each Xi

can be expressed as a set

Xi = {xi,1, xi,2, . . . , xi,mi
}, (2.1)

where each xi,j represents the jth SRG within the ith weakly connected component of the

SRG graph.

The SSRs of the given CAL network can then be expressed formally as the set

R = {r1, r2, . . . , rn}, where for each i, ri is defined by
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ri =

mi⋃
j=1

xi,j. (2.2)

Each r ∈ R is called a statically schedulable region (SSR) of the given CAL network.

Figure 2.7 shows an example of an SRG graph and the obtained statically schedu-

lable region.
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Figure 2.7: An illustration of a statically schedulable region.

2.5 Scheduling of SSRs

After deriving the SSRs from a given CAL network, a natural next step is schedul-

ing the SSRs — i.e., determining the execution order of the computations in each SSR.

25



Since, by construction, each SSR is statically schedulable, we can efficiently adapt SDF

scheduling techniques for this step in our propsoed design flow.

In order to apply SDF scheduling techniques to an SSR, we first construct a set of

one or more SDF actors from the ports in the SSR. In particular, all of the ports of a given

actor A within an SSR s are combined to form a corresponding SSR actor σ(s, A). Note

that in general, σ(s, A) may contain all of the ports in A or a proper subset of the ports,

depending on whether all of the ports of A are in s.

After decomposition of an SSR into SSR actors, an SDF graph representation of the

SSR emerges naturally, and SDF scheduling techniques can be applied to this SDF graph

representation to derive a static schedule for the SSR.

Note that in general, an SSR actor can correspond to the full functionality of a single

actor in the overall CAL network, or it can correspond to only part of the functionality.

Typically, the latter applies. Furthermore, the same CAL actor can have associated SSR

actors in different SSRs.

2.5.1 IDCT Example

Figure 3.6 illustrates SSRs within an IDCT (inverse discrete cosine transform) sub-

system. Here, the main body of the IDCT is composed of the actors row, tran, col, retran,

and clip. The dataGen and print actors are used to provide a testbench for the network

— dataGen is responsible for generating input data, and print for displaying the output

from the IDCT computation. The shaded regions shown in the figure correspond to the

different SSRs, which are unique to the application.
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Figure 2.8: SSRs in the IDCT subsystem.

Each SSR can be scheduled quasi-statically, which means a significant portion of

the schedule structure can be fixed at compile time. When we map the enclosing appli-

cation onto a multi-core platform, each SSR can be allocated to a single core, and the

scheduling for each SSR can be controlled on the core that is allocated to the SSR. If the

granularity of some SSRs is so large that allocating them as single-processor subsystems

results in poor load balancing, the SSR detection process can be post-processed with a

load-balancing phase that optionally adjusts SSR granularity to improve overall schedule

performance. Such refinement of SSRs before allocation is a useful direction for further

investigation.

If we map the IDCT onto a dual-core system based on SSR analysis, a straightfor-

ward mapping for this case is shown in Figure 3.6. In this case, the connections between

the cores are connections inside both the dataGen and clip actors. These weak connec-

tions can be implemented using semaphore primitives. Furthermore, inside each core,

the actions can be statically scheduled in terms of checks on an appropriately defined

semaphore. Here, we can easily take advantage of well known SDF scheduling tech-

niques, such as APGAN [37] [38], which provides a framework for incremental schedule

construction that can be adapted to a variety of objectives.

An example of SSR scheduling for the IDCT example is shown in Figure 2.9. Here
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the schedule for a single SSR is represented in the form of a schedule tree. This schedule

tree representation corresponds to a nested loop schedule where the internal nodes of the

tree correspond to loops; the iteration counts of these loops are given by the labels of

the corresponding internal nodes; and leaf nodes of the tree correspond to SSR actors.

More details on and applications of this kind of schedule tree representation can be found

in [39].

In the schedule tree shown in Figure 2.9, SSR actors that are labeled with purely

alphabetic names (no number in the name), such as tran and row, indicate SSR actors that

correspond to the the entire computation of the associated CAL actor. On the other hand,

SSR actors whose names contain numbers correspond to actors in the CAL network that

map to multiple SSR actors across multiple SSRs.

Note also that for this IDCT example, every actor port is contained in an SSR actor.

In general, some ports may lie outside of all SSRs; we refer to such ports as dynamic

ports. However, for the IDCT example, there are no dynamic ports.

Figure 2.9: Schedule tree for an SSR in the IDCT example.
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2.6 Grouping of Dynamic Ports and SSRs

In this section, we explore a new form of dataflow graph analysis to help streamline

the interaction between dynamic ports and SSRs. Such analysis helps to improve the

efficiency of SSR-based quasi-static schedules.

Recall that a port of a CAL network that is not contained in an SSR is called a

dynamic port. Given a dynamic port p, an SSR s, and an action a in s (i.e., a is part

of one of the SSR actors within s), we say that p is related to s if (1) p is referenced in

the body of a; (2) p is referenced in the action guard of a; or (3) p outputs tokens to a

(i.e., there is an input port that consumes tokens produced from p whenever a fires). We

define the strength of the relationship between the dynamic port p and the SSR s, denoted

Σ(p, s), as the total number of actions in s that p is related to. Thus, in general, Σ(p, s) is

a non-negative integer that is bounded above by the total number of actions in s.

In this section, we explore a scheme by which dynamic ports are grouped together

with SSRs based on the “strength” metric Σ. We refer to this scheme as strength-based,

iterative grouping (SBIG) of dynamic ports and SSRs. To demonstrate this approach, we

select a port-SSR pair Σ(p1, s1) that maximizes the strength value Σ(p, s) over the set of

all port-SSR pairs. Then we remove p1 from further consideration, and select a port-SSR

pair Σ(p2, s2) that maximizes the strength value over all remaining dynamic ports and

all SSRs. Then we remove p2 from further consideration, and continue this process of

matching up SSRs successively with dynamic ports until every dynamic port has been

assigned to an SSR. This leads to a partitioning of the set of dynamic ports across the set

of SSRs.
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At this point, each dynamic port is grouped with exactly one SSR, and in general,

each SSR is grouped with zero or more dynamic ports. The dynamic ports are then

analyzed to conditionally schedule the SSRs that are grouped with them. The results

of these conditional schedule constructions are then combined to form the quasi-static

schedule for the overall CAL network.

We experimented with our strength-based, iterative grouping approach on the MPEG-

4 RVC SP decoder system shown in Figure 3.1. When applied to this system, our tools for

SSR detection derived a total of 30 SSRs. 32 ports are left outside the SSRs — these are

the dynamic ports. By applying our method of strength-based, iterative grouping, we par-

titioned the 32 dynamic ports across the set of available SSRs. We then used the resulting

partitioning result to derive a quasi-static schedule for the system.
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Figure 2.10: A block diagram of an MPEG RVC decoder.

For these experiments, we further modified the scheduler in CAL2C [9] to better

accommodate SSRs. All of the SystemC primitives have been removed from the current

version of Cal2C. The current scheduler is a round robin scheduler executing each actor

in a loop; an actor is fired until input tokens are available and output FIFOs are not full.
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SSRs can easily be incorporated in this fully software-based implementation, independent

from SystemC, by removing all of the tests on the FIFOs.

A code generator that translates CAL-based dataflow models to SystemC is pre-

sented in [9]. Such a tool can be useful for simulation, but may lead to major inefficien-

cies if targeted to actual implementations. For example, in such a translation approach,

each actor in SystemC is executed in its own thread. Thus, context switches can occur

frequently during execution, and this can lead to poor performance, especially if many

actors with low granularity are present.

Compared to a direct translation in SystemC [9], our C mono-thread implemen-

tation is indeed 5 times faster. For our multi-core implementation, we have statically

mapped the actors (each actor is assigned a priori to a core). For each core, actors as-

signed on it are turned into a single thread with its own dataflow process network sched-

uler. Since only one thread is executed on each core, threads are not executed concurrently

but in parallel.

We conducted experiments involving the applications of CIF sequences with size

624x352. As shown in Table 2.1, the experimental results demonstrate that CAL2C with

quasi-static scheduling using strength-based, iterative grouping (SBIG) on the round robin

scheduler has the best performance in a multi-core system. CAL2C with SBIG can be

applied to more applications besides MPEG, and this is a useful direction for future work.

We note that the process of strength-based, iterative grouping (SBIG) between dy-

namic ports and SSRs, as well as the derivation of SSRs, are fully automated processes in
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SP decoder(with round robin scheduler) speed(frame/second)
monoprocessor 10

monoprocessor with SSRs 11
dualcore processor 15

dualcore processor with SBIG 16

Table 2.1: MPEG-4 SP decoder performance for 624x352 sequence.

our experimental setup. However, the output of SBIG is presently converted manually into

a corresponding quasi-static schedule for the given CAL network. Automating the con-

nection between SBIG and quasi-static scheduling, as well as exploring new techniques

to further optimize the resulting schedules are useful directions for further study.
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Chapter 3

Exploring the Concurrency of an MPEG RVC Decoder

3.1 Overview

Upcoming MPEG video coding standards are intended to increase the quality and

the flexibility of complex and versatile future video coding applications. Since 1988,

several MPEG standards have been developed successfully based on available hardware

technologies and software support. Early MPEG standards (MPEG-1 and MPEG-2) were

specified by textual natural-language descriptions. Starting with MPEG-4, reference soft-

ware written in C/C++ became the formal specification of the standard. Written in a se-

quential programming language, this reference software describes a sequential algorithm,

effectively hiding the considerable inherent concurrency of a video decoder. Furthermore,

the reliance on global memory and state makes the reference description difficult to mod-

ularize, resulting in a very monolithic specification. The observation of these drawbacks

of current video standard specification formalism led to the development of the Recon-

figurable Video Coding (RVC) standard [29]. The key concept of RVC is to be able to

design a decoder at a higher level of abstraction than the one provided by current generic

monolithic C based specifications to express the potential parallelism of the decoder. Fur-

thermore, hardware for embedded systems employs increasing amounts of parallelism

— e.g., in platforms such as multi-core systems on chip. When starting from sequential

specifications (e.g., in C/C++), designers targeting parallel platforms typically have to
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start with a complete rewrite of the reference code. This scenario leads to the following

questions: What are suitable languages for developing implementations on parallel plat-

forms? How is application concurrency represented and exploited? How can designers

enhance application concurrency?

CAL, as a dataflow/actor-oriented language, is a promising answer to the first ques-

tion and has been chosen by MPEG RVC as the normative language to describe MPEG

decoder coding tools. In addition to a stronger encapsulation of coding tools and a more

explicit description of the parallelism inherent in a decoding algorithm, constructing de-

coding algorithms as dataflow networks creates the opportunity to apply the wide range

of techniques for analyzing and implementing dataflow systems that have been developed

in the past (e.g., see [7]). Furthermore, CAL has been designed to make explicit a num-

ber of relevant properties of dataflow actors, which can be extracted and used as input

to those techniques. Concurrency mainly benefits system execution speed, especially for

real time systems such as video decoders. There are other issues, such as memory/buffer

and energy efficiency, related to concurrency, which are beyond the scope of this chapter,

and are useful directions for future work.

References [29], [14], [40] cover related aspects of reconfigurable video coding

and CAL-oriented tools. In particular, [29] gives an overview of the overall RVC frame-

work; Reference [14] provides details on the software code generator CAL2C; and Ref-

erence [40] elaborates on a hardware code generator for CAL. In contrast, this chapter is

distinctive in it focus on analyzing concurrency and exploiting parallelism; the topic of

concurrency is not addressed in depth in References [29], [14] and [40].

Using CAL as a concrete design representation framework, this chapter places em-
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phasis on answering the last two questions described above. More specifically, this chap-

ter analyzes data parallelism and pipeline concurrency that are exposed by CAL actors.

Furthermore, we exploit these forms of concurrency with new techniques for cross-actor

optimization. These techniques are enabled by dataflow analysis on intermediate repre-

sentations that are derived from CAL specifications. Based on these ideas, we present

novel tools and techniques for efficient implementation of video processing systems on

multi-core platforms.

Section 3.2 introduces previous work related to advanced reconfigurable video cod-

ing technology, dataflow models, and the CAL language. multi-core systems are also dis-

cussed in this section. Section 3.3 analyzes inter-actor concurrency obtained from CAL

specifications from the viewpoint of both hardware and software implementation. Sec-

tion 3.4 proposes techniques for cross actor-optimization that enhance multi-core system

performance. Simulation results are also presented in this section.

3.2 Background

3.2.1 Reconfigurable video coding

The desire for a more compositional approach for building existing and future video

standards, and for a shorter path to parallel implementation has led to the development

of the reconfigurable video coding (RVC) standard [29]. The MPEG RVC framework is

a new standard under development by MPEG that aims at providing a unified high-level

specification of current and future MPEG video coding standards. Rather than building a

monolithic piece of reference software, RVC standardizes an “Abstract Decoder Model”
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(ADM) composed of a network that interconnects a set of video coding tools with uniform

interfaces extracted from a library. Decoder descriptions are composed from that library,

which permits a wide range of decoding algorithms.

The MPEG RVC framework is currently under development in MPEG as part of the

MPEG-B part 4 [41] and MPEG-C part 4 [42] standards. The abstract decoder is built as

a block diagram or network in which blocks define processing entities called functional

units (FUs) and connections represent the data path between the FUs. This network is

described in MPEG-B part 4 as an XML dialect called FU Network Language (FNL).

RVC also provides in MPEG-C part 4 a normative standard library of FUs, called the

“Video Tool Library (VTL)”, and a set of decoder descriptions expressed as networks

of FUs. CAL is currently chosen as the language to express the behavior for the cod-

ing tools of the library (VTL). Such a representation is modular and helps in formulating

the potential configuration of decoders in terms of modifications of network topologies.

The ADM is a CAL dataflow program that constitutes the conformance point between

the normative RVC specification and all possible proprietary implementations that have

to be generated to decode the incoming bitstreams. Thus the MPEG RVC standard leaves

open the platforms and the implementation methodologies that can be used to generate

any RVC proprietary implementation. This provides all possibility of generating parallel

and concurrent implementations for a wide variety of existing and emerging implemen-

tation platforms. Thus, indirect generations of implementations will be possible together

with the direct synthesis of software and hardware from the ADM. All these possibilities

enable, for each application scenario, the users to select the most appropriate implemen-

tation methodology.
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3.2.2 Dataflow language

Since the mid 1980s, a class of graphical program representations has been evolving

steadily, and gaining increasing acceptance among designers of digital signal processing

(DSP) systems. Foundations for such dataflow representations have been provided by

computation graphs [16], Kahn process networks [17], and dataflow architectures [18].

Synchronous dataflow (SDF) is a specialized form of dataflow that is streamlined for effi-

cient representation of DSP systems [10]. Since the introduction of SDF, a variety of such

DSP-oriented dataflow models of computation have been proposed, and DSP-oriented

models have been incorporated into many commercial design tools, including Agilent

ADS, Cadence SPW (later acquired by CoWare), National Instruments LabVIEW, and

Synopsys CoCentric. These alternative modeling approaches provide different trade-offs

among expressive power (the range of DSP applications that can be represented), anal-

ysis potential (the rigor with which implementations can be automatically validated or

optimized), and intuitive appeal.

In DSP-oriented dataflow graphs, vertices (actors) represent computations of arbi-

trary complexity, and each edge represents the flow of data as values are passed from the

output of one computation to the input of another. Each data value is encapsulated in an

object called a token as it is passed across an edge. Actors are assumed to execute iter-

atively, over and over again, as the graph processes data from one or more data streams.

These data streams are typically assumed to be of unbounded length (e.g., derived imple-

mentations that are not dependent on any pre-defined duration for the input signals). In

dataflow graphs, interfaces to input data streams are typically represented as source actors
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(actors that have no input edges).

A limitation of SDF and related models, such as cyclo-static [22] and single-rate [43]

dataflow, is that dynamic dataflow relationships among computations cannot be described.

To express applications that involve such relationships, one must employ models that are

more expressive than such static dataflow models. Earlier work on DSP-oriented dataflow

models has focused heavily on static dataflow techniques, especially SDF. As designers

seek to develop more and more complex embedded DSP systems — incorporating more

flexible sets of features, and more powerful forms of adaptivity — exploration of dynamic

dataflow models is becoming increasingly important.

A variety of dynamic dataflow modeling techniques have been developed previ-

ously, including stream-based functions [44], functional DIF [24], and the CAL actor

language [8] that is targeted in this chapter.

3.2.3 Concurrency

In computer science, concurrency is a property of systems in which several com-

putations are executing simultaneously, and potentially interacting with each other. The

computations may be executing on multiple cores in the same die, preemptively time-

shared threads on the same processor, or executed on physically separated processors.

As mentioned before, real-world embedded applications are typically developed in

sequential programming languages, such as C/C++. In addition to CAL, various other lan-

guages have been developed for concurrent programming. An example of such a language

is the Erlang language [45]. Many of the previously-developed concurrent programming

38



languages, including the Erlang language, are oriented towards general-purpose program-

ming. In contrast, CAL targets more specialized application domains, such as video pro-

cessing and many other domains of DSP, that are suited to dataflow representations.

3.2.4 The CAL language

CAL is a dataflow- and actor-oriented language that describes algorithms by using

a set of encapsulated functional components (actors) or functional units (FUs) in RVC

that communicate with one another based on dataflow semantics. In CAL, an actor is a

modular component that encapsulates its own state. The state of an actor cannot be shared

with other actors. Thus, an actor cannot modify the state of another actor.

The behavior of a CAL actor is defined in terms of a set of actions. The operations

an action can perform are consuming (reading) input tokens, modifying internal state,

and producing output tokens. The topology of the connections between input and output

ports of actors constitute what is called a network of actors. Compared to actors, which

can be of arbitrary functional complexity, edges — connections between actors — are

conceptually simpler. The only interaction an actor has with other actors is through input

and output ports that connect to dataflow graph edges.

CAL actors are specified in terms of actions. Each action of an actor defines the

kind of transitions that internal states can undergo. An action can only be executed (fired)

under specific conditions; these conditions can be specified in terms of (1) the availability

of input tokens, (2) the values of input tokens, (3) the state of the enclosing actor or (4)

the priority of the action. In an actor, actions are executed sequentially — that is, only
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one action is executed at a time for a given actor.

RVC uses the CAL actor language [8] as the language for specifying FUs, and

the FU network language for the dataflow composition [42]. CAL is supported by a

portable interpreter infrastructure called OpenDF that can simulate a hierarchical network

of actors. Some tools related to CAL can be found in OpenDF [31]. Among them, we

are especially interested in the code generators that translate CAL into C or hardware

description language (HDL) code. In addition to the strong encapsulation afforded by

the actor description, the dataflow model also makes much more algorithmic parallelism

explicit. This provides the unique opportunity to apply the wide range of techniques

used to implement dataflow systems to the realization of video coding algorithms on a

variety of platforms. In particular, platforms will differ in their degrees of parallelism,

which gives rise to the challenging problem of matching the concurrency of the decoder

specification with the parallelism of the computing machine that is executing it.

3.2.5 Multi-core systems

Multi-core devices, which incorporate two or more processors on the same inte-

grated circuits, are becoming increasingly relevant to the design and implementation of

DSP systems (e.g., see [46]). In multi-core platforms, all cores can execute instructions

independently and simultaneously. While instruction level concurrency is targeted by

single core processors, multi-core structures target task level concurrency.

In multi-core platforms, carefully managing communication and synchronization

among different cores is important to achieve efficient implementations. Two or more
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processing cores sharing the same system bus and memory bandwidth limit the achiev-

able performance improvements. For example, if a single core is close to being memory-

bandwidth-limited, going to a dual-core solution may only result in 30% to 70% im-

provement. If memory bandwidth is not a problem, 90% or greater improvement can be

achievable. It is possible for an application that used two CPUs to end up running signifi-

cantly faster on a single dual-core platform if communication between the CPUs was the

limiting factor.

The ability of multi-core processors to increase application performance depends

on the use of multiple concurrent tasks within applications. Therefore, if code is written

in a form that facilitates decomposition into concurrent tasks, the multi-core technologies

can be exploited more effectively. In the context of dataflow programming, the CAL

language is suitable for such decomposition into concurrent tasks. This chapter addresses

the systematic mapping onto parallel platforms of concurrent tasks that are extracted from

CAL programs.

3.3 Inter-actor concurrency analysis

3.3.1 Data-driven processing

The transitions between actions within an actor are purely sequential: actions are

fired one after another. This means that during each actor invocation, only one action is

executed inside the actor. In a CAL network, distinct actors are functionally independent

and work concurrently, with each one executing its own sequential operations based on

the availability of sufficient numbers of tokens on actor input ports.
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Connections between actors in CAL are purely data-driven. This data-driven prop-

erty of CAL results from two properties: A CAL actor executes only if there are enough

tokens on the actor input ports to trigger an action, and execution of a CAL actor pro-

duces nothing “outside the actor” other than tokens on the output ports of the actor. In

other words, CAL actors communicate with one another only using tokens that are passed

along dataflow graph edges. Networks of CAL actors are described in FNL language.

The CAL language naturally supports hierarchical design, which is important for

MPEG RVC coding systems. In hierarchical dataflow graphs, actors can have their inter-

nal functionality specified in terms of embedded (nested) dataflow graphs. Such actors

or FUs are called hierarchical actors or super actors. A hierarchical actor in CAL can

be specified in terms of a network of CAL actors. This approach facilitates modularity,

where the internal specification of any actor can be modified without impacting that of

other actors.

In this chapter we target as a case study the example of an MPEG-4 simple profile

decoder (MPEG-4 SP decoder) described in RVC formalism. A graphical representation

of the macroblock-based SP decoder description is shown in Figure 3.1. In Figure 3.1, the

shaded area indicated as texture decoding represents a super actor that is described in FNL

. Similarly, the shaded area labeled as motion compensation also represents a hierarchical

actor in our design. Furthermore, inside the actor texture decoding, the Inverse DCT actor

represents a lower-level super actor, which is also described in FNL and is composed of

several atomic (non-hierarchical) actors/FUs. The other blocks in the diagram are atomic

actors/FUs.

Overall, in the MPEG-4 SP decoder shown in Figure 3.1, there are three hierarchies
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and atomic actors and super actors from different hierarchies are interleaved. Note that

for readability, only one edge is shown in cases where two actors are connected by more

than one edge. It is possible, for example, that multiple edges connect the same pair of

actors because of connections between different interfaces of hierarchical subsystems.
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Figure 3.1: An RVC block diagram of an MPEG-4 Simple Profile decoder.

3.3.2 Data parallelism inside CAL networks

In Figure 3.1, there are three sub-systems that handle Y , U and V separately. These

three sub-systems share the same set of processing modules in the form of CAL actors

that differ only in their associated sample rates.

The structure of a macroblock demands that the processing used in MPEG-4 utilize

4:2:0 YUV processing. The color channels sample at exactly half the rate in both the

horizontal and vertical directions as they relate to the luminance (Y ) channel. For this

reason, for every U and V pixel, there are four Y pixels. The spatial relationship among

the three channels is documented in many MPEG articles.

The subsystems for Y , U and V are concurrent in the sense that they handle signals

from different channels. These signals are generated by the parser actor, and then are
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directed to the Y , U , and V subsystems for processing. In this way, the CAL network

explicitly exposes inter-actor, and inter-subsystem concurrency in the overall application.

3.3.3 Pipeline concurrency analysis

Exploiting different forms of concurrency is often important when we implement

DSP applications on multi-core systems. The intrinsic capability of CAL operators and

programming constructs to describe different forms of concurrency, including pipeline

concurrency, which is a special form of task level concurrency for consecutive input data,

and more irregular forms of task level concurrency, makes CAL especially useful for

design and implementation of DSP applications.

Each atomic CAL actor encapsulates a set of computations that are executed se-

quentially — i.e., there is no concurrency among different actions at the intra-actor level.

However, the data-driven semantics of CAL actors, where different actors can execute

whenever they have sufficient input data, effectively exposes inter-actor concurrency.

How effective a CAL representation is in exposing inter-actor concurrency depends not

only on the CAL semantics but also on the particular CAL program that is used. Given a

CAL program, it may be possible to redesign the program to expose more concurrency;

such rewriting of CAL programs is beyond the scope of this chapter.

Our CAL representation for the MPEG-4 SP decoder is composed of 27 distinct

actors. Some of these actors are instantiated multiple times; the total number of actor

instantiations in our MPEG-4 SP decoder program is 42. If a multi-core platform with

enough processing cores is available, each actor instance can be mapped to a separate
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core, and we can use the dataflow semantics of inter-actor communication in CAL to

drive the communication and synchronization among the multiple processors. If there are

not enough processor cores to accommodate such a one-to-one mapping between actor

instances and cores, we need to map groups of multiple actors to the same core. Further-

more, even if enough cores are available, it may be desirable to employ such “grouped

mappings” (and leave some processors unused) if the overhead of inter-processor com-

munication dominates parallel processing efficiency for some subsystems (e.g., when the

granularity of the actors is relatively small).

Thus, grouping of actors onto multiple processing units is in general an important

step in the mapping of dataflow programs onto multi-core platforms (e.g., see [21]). This

step is often referred to as “actor assignment” (i.e., the assignment of actors to physical

processors). To derive efficient parallel implementations of CAL networks, it is generally

important to perform actor assignment carefully.

3.3.4 Concurrency from available code generators

A number of code generators have been developed for translating CAL programs

into platform-specific implementations.

For example, a hardware description language (HDL) code generator, CAL2HDL,

was developed at Xilinx [40]. In the current version of CAL2HDL, an actor with N ac-

tions is translated into N +1 “threads”, one for each action and another one for the action

scheduler, which coordinates execution across the different actions. The action scheduler

is the mechanism that determines which action to fire next. This determination is made
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based on the availability of tokens, the guard expression for each action (if present), the

underlying finite state machine schedule, and the action priorities. The resulting hardware

circuit can be optimized further in a sequence of steps, including bit-accurate constant

propagation, static scheduling of operators, and memory access optimization. Detailed

discussion of CAL2HDL is beyond the scope of this chapter; we refer the reader to [40]

for further information.

HDL programs generated from CAL2HDL provide suitable targets for dedicated

hardware implementation and fully concurrent programs. However, targeting CAL to

embedded processors, including embedded multi-core platforms, requires a different ap-

proach, including different abstractions and target languages.

CAL2C [2, 47] is a code generator that translates CAL into C code, and provides

a suitable path for implementing CAL programs on embedded processors. An important

objective in the development of CAL2C is the minimization of context switch overhead.
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Figure 3.2: CAL2C compilation process: The action translation process starts with an
abstract syntax tree (AST) derived from the CAL source code; the transformed CAL AST
is expressed in the C intermediate language (CIL) [1], where CAL functional constructs
are replaced by imperative ones.

In CAL2C, software synthesis from a CAL network includes two parts: actor trans-

formation [2] and network transformation [47]. Inside an actor, CAL translation is per-
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formed in two parts: translation of actor code (actions, functions, and procedures) to ex-

press the core functionality, and implementation of the action scheduler (priorities, FSMs,

and guards) to control execution of the actions [2]. Translating CAL actor code produces

a single C file that contains translated versions of functions, procedures, and actions. Each

action is converted into one function and the functions to describe the actions for one CAL

actor share a set of common input/output ports as the function arguments in C. An action

scheduler is created to control action selection during execution. Priorities, guards, token

consumption rates, and FSMs have to be translated to this end. Determining the overall

order of action execution is required to have a consistent evaluation of actions that can

be fired. SystemC scheduling is used in CAL2C generation as a sequential scheme. Fig-

ure 3.2 illustrates how CAL2C works. For further details on CAL2C, we refer the reader

to [47].

In [47], we have applied CAL2C successfully on our CAL-based design for the

MPEG-4 SP decoder. Simulation results show that the synthesized C-software is as

fast as 20 frames/s, which provides near-real-time performance for the QCIF format (25

frames/s) on a standard PC platform. It is interesting to note that our CAL-based speed

processing generated from CAL2C is scalable in terms with the number of macro-blocks

decoded per second (MB/s) (the number of MB/s remains constant when dealing with

larger image sizes). Furthermore, this number can be increased if we use more powerful

processors.

Although both forms of design produce code in the same kind of language, code

generated from CAL2C is different compared to implementations that use C/C++ as the

starting point. As a dataflow language, CAL restricts the way in which designers can
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describe applications, and these restrictions carry over through CAL2C to produce code

that is more modular and purely dataflow-oriented compared to implementations that are

developed directly from C/C++. This is illustrated in Figure 3.3.

 main
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 function 2

function 3

 main

 actor 1

actor 2

 actor 3

Tradition C/C++ reference Language C Programming from CAL2C

Figure 3.3: Comparison between direct-C/C++-based implementation and implementa-
tion using CAL2C.

After obtaining a set of threads from CAL2C, the mapping of these threads onto

the targeted multi-core platform remains an important issue. Since CAL-based threads

communicate with one another through tokens that pass along dataflow graph edges, one

must provide mappings from dataflow edges into appropriate communication primitives,

depending on whether the edges (i.e., the incident source and sink actors) are assigned

to the same core (intra-core communication) or to different cores (inter-core communica-

tion). In general, inter-core communication is less efficient, and this should be taken into

account carefully when mapping threads onto cores.

Previous CAL-based synthesis tools, including CAL2HDL and CAL2C, focus on

intra-actor code generation without attention to inter-actor optimization. For example,
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for CAL2C, both actor- and network-level schedulers are based on run-time scheduling

mechanisms from systemC, which is not optimized for cross-actor dataflow scheduling.

In the next section we explore new techniques for inter-actor optimization of CAL

programs, and we apply these techniques in conjunction with CAL2C to derive optimized

software implementations for multi-core platforms.

3.4 Inter-actor optimization for CAL networks

Although CAL2C exposes task level concurrency, there is significant room for im-

provement in CAL2C-based implementation in terms of the scheduling mechanisms used

to map and coordinate tasks across multiple processors. In particular, since CAL2C inher-

its the scheduling mechanism of systemC, there is no use of task level static scheduling.

In this section, we describe techniques to exploit the concurrency exposed by CAL

network representations. In particular, we develop new graph analysis techniques that

result in efficient inter-actor optimization for CAL-based implementations. The result of

our optimization is in the form of units of scheduling that we call statically schedulable

regions (SSRs). SSRs are of significant utility in static scheduling, and mapping of CAL

networks onto multi-core systems.

3.4.1 DIF and network analysis capability

In this section, we present our application of the dataflow interchange format (DIF)

package [7, 43], a software tool for analyzing DSP-oriented dataflow graphs, to the anal-

ysis and transformation of CAL networks for efficient implementations.
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The dataflow interchange format (DIF) is proposed as a standard approach for spec-

ifying and integrating arbitrary dataflow-oriented semantics for DSP system design. The

DIF language (TDL) is an accompanying textual design language for high-level specifi-

cation of signal-processing-oriented dataflow graphs. The TDL syntax for dataflow graph

specification is designed based on dataflow theory and is independent of any design tool.

For a DSP application, the dataflow semantic specification is unique in TDL regardless

of the design tool used to originally enter the specification. The TDL grammar and the

associated parser framework are developed using a Java-based compiler-compiler called

SableCC [48]. For the complete DIF language grammar and a detailed syntax description,

we refer the reader to [43].

TDL is designed as a standard approach for specifying DSP-oriented dataflow graphs.

TDL provides a unique set of semantic features to specify graph topologies, hierarchical

design structures, dataflow-related design properties, and actor-specific information. Be-

cause dataflow-oriented design tools in the signal processing domain are fundamentally

based on actor-oriented design, TDL provides a syntax to specify tool-specific actor infor-

mation, which ensures that all relevant information can be extracted from a given design

tool. The DIF Package (TDP) is a software tool that accompanies TDL, and provides

a variety of intermediate representations, analysis techniques, and graph transformations

that are useful for working with dataflow graphs that have been captured by TDL. Moc-

graph is a companion tool that is provided along with TDP. Mocgraph can be viewed as a

library of algorithms and representations for working with generic graphs, whereas TDP

is a specialized package for working with dataflow graphs.

For example, TDP includes a transformation tool to convert SDF representations
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into equivalent homogeneous SDF (HSDF) representations, based on the transformation

algorithm introduced in [10]. Such a transformation can in general expose additional con-

currency that is not represented explicitly in the original SDF graph. In this chapter, we

make use of both generic-graph-based (via Mocgraph) and model-based (via TDP) anal-

ysis methods to identify SSRs within CAL networks As we will demonstrate later in this

chapter, automated identification of SSRs from CAL networks provides a powerful and

novel methodology for optimized implementation of dataflow graphs. This methodology

is especially useful in the design and implementations of embedded multiprocessors for

video processing. In section 3.4.3, we develop the concept of SSRs in details.

Compared to other design tools for representation and transformation of dataflow

graphs — such as SysteMoC [27], PeaCE [28], and stream-based functions [44] — a

distinguishing feature of TDP is its support for representing and manipulating different

specialized forms of dataflow semantics. This arises from the emphasis in TDL on rec-

ognizing a wide variety of important forms of dataflow semantics along with relevant

modeling details that are required to meaningfully analyze those semantics. Due to this

feature of TDP, its capabilities are highly complementary to those of existing dataflow-

based frameworks, since TDL and TDP can be used to capture and analyze, respectively,

representations from many of these frameworks.

3.4.2 Interface between DIF and CAL

Our method to optimize implementation of DSP applications combines the advan-

tages of three complementary tools, as shown in Figure 3.4. The given DSP application is
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initially described as a CAL network, which is a highly expressive form of dataflow graph.

The CAL-based dataflow representation is then translated into a DIF-based intermediate

representation for analysis by TDP. This TDP-driven analysis produces a set of SSRs,

and an associated quasi-static schedule, which is then translated into a reformulated CAL

specification. This transformed CAL code is then translated to a C code implementation

using CAL2C. The generated CAL2C implementation is optimized to exploit the static

structures provided by the SSRs and their enclosing quasi-static schedules.

In our current work, TDP reads XML representations of CAL actors and CAL net-

works, and then generates a TDL file based on the extracted information. We are also

developing an interface between XML and TDL, through which TDL files can be rep-

resented in XML format, thereby making XML a bridge for communicating between

different dataflow languages in our targeted CAL- and DIF-based design flow.
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CAL actor

DIF rep. of
CAL network

Analysis: actor
SRP

Analysis: detect 
SSR

CAL network with 
knowledge of SSR

DIF: TDL&TDP
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Figure 3.4: Overview of our CAL- and DIF-based method for optimizing dataflow graph
implementation. SRP represents statically related port and SSR represents statically re-
lated region.

Describing an actor in CAL involves describing not only its ports, but also the struc-

ture of its internal state; the actions it can perform; what these actions do (such as token
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production and token consumption, and updating of actor state); and how to determine the

action that the actor will perform next. When performing network dataflow analysis, we

analyze interactions among ports, state variables, and guard conditions of CAL actors. In

our current research, which focuses on deriving and utilizing information about the token

production and consumption rates of actors, action priority is not taken into consideration.

This is because action priority only affects the order of action execution within individual

actors; it does not affect the numbers of tokens that are produced or consumed.

3.4.3 Statically schedulable regions

Using TDP, one is able to automatically process regions that are extracted from

the original network, and exhibit properties similar to synchronous dataflow (SDF) [10]

graphs. SDF is geared towards static scheduling of computational modules, which can

provide significant improvements in system performance and predictability for DSP ap-

plications. Detection of SDF-like regions is an important step for applying static schedul-

ing techniques within a dynamic dataflow framework. Segmenting a system into SDF-like

regions also allows us to explore another kind of intrinsic concurrency — that resulting

from the dynamic dependencies between different regions. Using SDF-like region detec-

tion as a preprocessing step to software synthesis generally reduces the number of threads,

and is well suited for efficient parallel implementation of video processing systems. In

this chapter, we designed and implemented the statically schedulable region detection

algorithm as part of TDP to address inter-actor concurrency.

Given a dataflow graph G consisting of CAL actors, one can construct a port con-
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nectivity graph (PCG) P = (V,E), where V , the vertex set of the graph, is the set of all

ports of all actors in G, and E is a set of undirected edges. If there is an edge between

a pair of ports(A.a,B.b), the relationship between ports A.a and B.b satisfies two condi-

tions: connectivity and statically-related numbers of tokens. When discussing a graphical

representation of a CAL network, we assume that the representation is in the form of a

PCG, unless otherwise stated.

Our approach for deriving statically schedulable regions involves partitioning and

grouping actor ports based on relationships that pertain to various kinds of interactions

between ports.

This overall process of partitioning and grouping begins at the level of individual

actors. Ports inside an actor can be viewed as having different kinds of associations

with one another. Some ports can be viewed as related because they are involved in the

same action, while some are related because they affect the same state variable. We refer

to the set of ports in A as the port set of A, denoted as ports(A). For a given action

l ∈ Γ(A), the set of ports that can be affected by the action is denoted (allowing a minor

abuse of notation) by ports(A)l. In this chapter, we apply the following two kinds of port

associations:

1. ∃(l ∈ Γ(A)) such that a, b ∈ ports(A)l;

2. ∃l,m ∈ Γ(A) such that a ∈ ports(A)l, b ∈ ports(A)m, l is a state-changing action,

and m is a state-guarded action.

We define these two conditions as the coupling relationships, and we observe that

in general, two distinct ports can satisfy zero, one or both of the coupling relationships.
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In the case that one or both of the coupling relationships are satisfied, we say that these

two ports have strong connections.

As shown in Figure 3.5, there are four stages in our application of the PCG: cou-

pled ports (CPs), coupled groups (CGs), statically related groups (SRGs), and statically

schedulable regions (SSRs). Using TDP, we repeatedly apply two key techniques when

working with the PCG — techniques of partitioning and grouping — through the con-

nected component analysis of the PCG. Transformation of PCG is the procedure of all the

ports in the CAL network going through the above four stages. The detailed description

on strong connections, statically schedulable regions and PCG derived in our design flow

is the result of network analysis in TDP [26].
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Figure 3.5: SSR detection in PCG.

By transforming the PCG for a CAL network, we obtain a set of SSRs. In general,

this set can be empty or it can contain one or multiple elements. For individual actors,

SSRs distinguish “strong” connections from “weak” connection among ports in terms of

static schedule-ability analysis. Regarding the CAL network, SSRs combine parts of the

system that exhibit potential for efficient static or quasi-static scheduling.
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3.4.4 Mapping SSRs into multi-core systems

CAL provides for effective concurrent programming, which provides natural ben-

efits for multi-core systems. However in the available code generators for CAL, such

as CAL2C, no optimization is performed for CAL actors. SSRs distinguish weak con-

nections from strong connections among ports. Each SSR is grouped and subsequently

applied as a thread to help optimize the multi-threaded implementation for a multi-core

target. The main differences between SSR-based threads and CAL-actor-based threads

lie in two aspects: On one hand, each SSR-based thread can be quasi-statically sched-

uled, which allows for significant compile-time streamlining of the associated scheduling

mechanisms. On the other hand, data connections between SSR-based threads are much

weaker compared to intra-SSR connections. This latter property improves interprocessor

communication. For these reasons, SSRs provide enhanced granularity for parallelization

on multi-core systems.

Figure 3.6 illustrates SSRs within the IDCT subsystem. Here, the main body of the

IDCT is composed of the actors row, tran, col, retran and clip. The dataGen and print

actors are used to complete a testbench for the network — dataGen is responsible for

generating input data, and print for displaying the output from the IDCT computation.

The shaded regions shown in the figure correspond to the different SSRs, which are unique

to the application.

Next, we consider mapping of SSRs into multi-core systems. If we temporarily

ignore the load balancing of computational tasks, we map one SSR into one core. In the

example of the IDCT subsystem, there are two SSRs, which can be mapped naturally for
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row
X Y

trans
X Y X Y X Y

clip
SIGNED

I

O

col retrans
datagen

S

DATA

printInput

row, col--GEN_124_algo_Idct1d.cal; tran,retran—GEN_algo_Transpose.cal;
clip—GEN_algo_Clip.cal; data_gen--idct2d_data_generate.cal;print--idct2_print.cal 

Figure 3.6: SSRs in the IDCT subsystem.

a dual-core system. If all of the ports in one actor belong to the same SSR, we allocate

the actor onto one core. On the other hand, for an actor that has ports belonging to

different SSRs, we divide the actor into two or more parts, and each part is allocated

separately — thus, in general, actors may be “split” across multiple cores if they are

separated by the SSR construction process. As we described before, SSRs distinguish

strongly related ports from relatively weaker connections. For example, inside one actor,

two SRGs may interact with one another only through processing of shared state variables.

The mechanism to access such shared data can be easily implemented in a multi-core

system, such as through use of semaphore primitives.

In another word, SSR distinguish weak connections from strong connections. Thus,

when two SSRs are allocated onto two cores, the connections for the SSRs between the

cores are weak. In our example, semaphores can be used for the two cores to access

the same data. In an SSR-based multi-threaded system, data movement between cores

is reduced, and it takes correspondingly less time and effort for memory management

and synchronization between cores. In this sense, SSR-based systems are effective in

exploiting data locality for multi-core systems.

DMA is helpful for intra-chip data transfer in our implementation on multi-core

processors, where each processing element is equipped with a local memory and DMA
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is used for transferring data between the local memory and the main memory. Multi-core

systems that have DMA channels can transfer data to and from devices with significantly

less CPU overhead. Similarly, a processing element inside a multi-core processor can

transfer data to and from its local memory without occupying its processor time, which

provides for computation and data transfer concurrency. Using DMA, data communica-

tions between actors are concurrent with the computations, and therefore concurrency can

be further enhanced. Adapting DMA into our hardware platform is a promising direction

of future research.

Each SSR can be scheduled quasi-statically, which means a significant portion of

the schedule structure can be fixed at compile time. Scheduling of each SSR can be

controlled in the core allocated for the SSR. Scheduling control is centralized regarding

synchronization between SSRs. For two SSRs that share data, the central scheduler must

determine the order of execution between the SSRs.

Suppose that we have a dual-core platform. If we map the tasks based on actors,

as implemented in the original CAL2C, one option is shown in Figure 3.7. Four CAL

actors are mapped into one core, and the other three actor are mapped into the other

core. There are other possible options with differences in the numbers of actors that are

mapped to individual cores. Whatever option is used for mapping actors, although inter-

actor concurrency is maintained, for each macroblock processed by the IDCT module,

execution of actors is sequential. Furthermore, since there are two paths between actors

dataGen and clip, as shown in Figure 3.7, if these two actors are mapped onto separate

cores, there is a relatively large amount of data communication between the cores, which

in turn results in a large amount of context switch overhead on the individual cores.
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If we map the IDCT onto a dual-core system based on SSR analysis, a straightfor-

ward mapping for this case is shown in Figure 3.6. In this case, the connections between

the cores are weak connections inside both the dataGen and clip actors. These weak

connections can be implemented using semaphore primitives. Furthermore, inside each

core, the actions can be statically scheduled in terms of checks on an appropriately defined

semaphore. Here we can easily take advantage of well known SDF scheduling techniques,

such as APGAN [49] [38]. An example of scheduling of SSRs, including the actor clip,

is shown in Chapter 2.

rowX Y tranX Y retranX Y clipI OX Y

Signed

col

dataGen
S

DATA

print
input

row, col--GEN_124_algo_Idct1d.cal; tran, retran--GEN_algo_Transpose.cal;
clip--GEN_algo_Clip.cal; data_gen-- idct2d_data_generate.cal; print-- idct2d_print.cal;

Figure 3.7: Actor-level mapping onto a multi-core platform.

After integrating results of SSR analysis into CAL2C, we obtained a modified ver-

sion of CAL2C, which we call CAL2C-SSR. To evaluate the effectiveness of our SSR

techniques, we conducted experiments on a dual-core 2.5Ghz laptop. We generated C
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code using CAL2C and CAL2C-SSR for three different IDCT versions. The first version

(V1) does not employ any SSR analysis, and can be viewed as being scheduled purely

through SystemC, which is used in CAL2C. In this version, the actors are mapped onto

two core as shown in Figure 3.7.

The second version (V2) uses CAL2C-SSR. This version exploits the SSRs illus-

trated in Figure 3.6, and employs a quasi-static integration of static schedules for these

SSRs with top-level dynamic scheduling. In this version, two SSRs are mapped onto two

cores, and semaphore primitives are used for inter-SSR communication.

The third version (V3) also uses CAL2C-SSR. This version also uses a modified,

more predictable version of the clip actor that can be used when the input data is known

in advance. In the new version of clip, the ports Signed and O are rewritten to become

coupled ports. Then the original two SSRs are combined as one SSR through connections

inside clip. In the illustration of V3 shown in Figure 3.8, the IDCT system becomes an

SDF model that runs as a single thread. Since entirely static scheduling is used in this

version, V3 is the most efficient in terms of execution speed.

row
X Y

trans
X Y X Y X Y

clip
SIGNED

I

O

col retrans
datagen

S

DATA

printInput

row, col--GEN_124_algo_Idct1d.cal; tran,retran—GEN_algo_Transpose.cal;
clip—GEN_algo_Clip.cal; data_gen--idct2d_data_generate.cal;print--idct2_print.cal 

Figure 3.8: IDCT subsystem with one SSR.

We experimented with all three IDCT versions using Microsoft Visual Studio. The

results are shown in Figure 3.9. Here, V2 shows an improvement in performance of 1.5

times compared to V1, whereas V3 shows the best performance among all three versions.
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Note that while V3 exhibits the best performance, demonstrates that larger SSR

regions can lead to significant improvements in performance, and is generally interesting

as a kind of “limit study”, this version is not of practical utility. This is because V3

requires prior knowledge of input data, which is not a practical assumption for real-time

operations.
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Figure 3.9: Results: clock cycles vs number of iterations.

3.4.5 Concurrency analysis of the MPEG-4 SP decoder

When we analyze the MPEG-4 SP decoder in Figure 3.1 in the domain of TDP, the

first step is to translate the hierarchical system into a flattened one in which every actor is

an atomic actor.

In TDP, a fork actor is introduced to implement dataflow-style broadcasting when

needed (i.e., when data must be copied to multiple outgoing edges). For example, Header

is an atomic actor inside the super actor parser in the CAL network of Figure 3.1, and
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the tokens produced from the BTYPE port of the actor Header are broadcast to five dif-

ferent input ports of different actors. Thus, in the intermediate representation derived by

TDP, a fork actor GEN-mgnt-fork is inserted between Header and the five actors that are

destinations of the broadcast. Conceptually, whenever GEN-mgnt-fork fires, it consumes

a single token and produces copies of that token onto its five output ports. Due to space

limitations, the PCG graph of the MPEG RVC decoder is not illustrated in this chapter.

When applied to the targeted decoder system, our tools for SSR detection return

a total of 30 SSRs that are detected. Each SSR can be statically scheduled in terms of

some enclosing condition. Since SSRs can be processed concurrently, the SSRs become

the basic unit for thread formation instead of actors. Compared with actor-based threads,

SSR-based threads provide advantages such as reduced inter processor communication

(IPC) and synchronization overhead between threads. These advantages are important

since IPC and synchronization overhead are often limiting factors for performance en-

hancement in multi-core platforms.

We further modified the scheduler of CAL2C to better accommodate SSRs [14].

All of the SystemC primitives have been removed from the current version of Cal2C.

The current scheduler of CAL2C is improved into a round robin scheduler [50] executing

each actor in a loop; an actor is fired until input tokens are available and output FIFOs

are not full. SSRs can be easily incorporated in this fully software-based implementation,

independent from SystemC, by removing all of the possible tests on the FIFOs when an

SSR is detected.

We conducted experiments involving the application of CIF sequences with size

352x288. A CIF-size image (352x288) corresponds to 22x18 macroblocks. As shown in
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MPEG-4 SP decoder speed frame/second
monoprocessor with systemC scheduler 8

monoprocessor with round robin scheduler 42
monoprocessor with round robin scheduler and SSR 44

dual-core processor with round robin scheduler and SSR 50

Table 3.1: MPEG-4 SP decoder performance for 352x288 CIF sequence.

Table 3.1, the experimental results demonstrate that CAL2C with SSR on the round robin

scheduler has the best performance in a multi-core system.

Note that although we have detected many SSRs in the whole MPEG-4 SP decoder

system, we have applied SSRs only to three parts within the IDCT system. These are

parts where SSR detection has significant impact. A completely thorough application of

SSRs would require much more effort, but we expect that such an effort would result in

further improvements. This is a useful direction for further exploration in this case study.

We relate the number of ports in one SSR to the scale of the SSR granularity due

to the general fact that a larger number of ports result in a bigger sequence of actions.

In some cases, however, SSRs may produce too large a granularity to promote effective

computational load balancing. In such cases, further dataflow analysis techniques are

needed to decompose “large” SSRs into smaller units that are more computationally-

balanced. Similarly, it may be advantageous to combine fine-grained (“small”) SSRs into

larger units to further promote the streamlining of IPC and synchronization. Thus, SSR

detection provides an important step towards improving the dataflow granularity of CAL

programs; however, there may be room for significant further improvement through post-

processing transformations that operate on the detected SSRs. Some work along these

lines has already been developed as part of the PREESM project [51]. Further exploration

on this class of “granularity-adjustment” transformations for SSRs is a useful direction for
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further work.
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Chapter 4

Methods for Efficient Implementation of Model Predictive Control

4.1 Overview

Model Predictive Control (MPC) has found broad application, especially in the

process industry. The main limitation on its application is that it is very computationally

demanding [52]. As a result, there has been considerable research aimed at speeding up

the computation of optimal controls. Most of this research has concentrated on improving

the algorithms. Relatively little work [53] has been devoted to improving the implemen-

tation of the algorithms. But the two go hand in hand. For example, Edlund et al. [54]

have reduced the time to complete the computations in a specific MPC application by a

factor of more than 10 by carefully optimizing the implementation of the algorithm.

Recent developments and trends in computing hardware greatly increase the poten-

tial for increasing the speed of the MPC computations by properly implementing them

in hardware. Specifically, multicore processes are now prevalent. Dual and quad-core

processors are common in today’s desktop and laptop computers. Highly parallel and rel-

atively inexpensive processors, such as the Nvidia GeForce 9800 GX2, with 256 stream

processors are also available. Because of the inherent tradeoffs between speed and power

consumption in computing the current predictions are that this trend will continue, with

the number of cores per processor likely to double every two to three years [55]. Further

evidence of this trend is that MATLAB now includes a collection of routines for parallel
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computation.

It can be very time consuming to analyze code line by line in an effort to find ways

to implement it on a parallel machine and to minimize the time required for its execution.

Furthermore, it can require considerable expertise to do this effectively. Thus, we are

developing an analytical and computational framework to assist the user in doing this op-

timization. The framework utilizes a high level method for modeling control algorithms.

The resulting models display the flow of data and the sequencing of calculations in a

way that greatly facilitates their analysis. In particular, it is relatively easy to see where

computational and/or storage bottlenecks exist. Once identified, these problems can be

eliminated or ameliorated by modifying the algorithm or by proper hardware implemen-

tation. Furthermore, the approach is hierarchical. It can be applied to components of the

algorithm as well as to the overall algorithm.

Our work aims to provide a dataflow-based framework to model and analyze com-

putationally intensive control applications and to improve their performance by taking

advantage of rapidly developing parallel distributed systems.

In earlier work [56] and [57] we described the basic framework and applied it to

develop faster implementations of the Newton-KKT and active set methods for solving

quadratic programming problems. The rationale for doing this first was that most MPC

problems are solved by the repeated application of one of these two basic procedures.

Thus, fast implementations of these algorithms would benefit almost anyone wanting to

apply MPC.

This chapter reports two further developments. The first is straightforward. We have

improved the benchmarks for testing our implementations. This is important because bet-
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ter benchmarks result in more accurate estimates of the time needed for the computations.

The second improvement is in two parts. We have greatly increased the speed of compu-

tation for both Newton-KKT and active set methods by modeling, analyzing, and creating

highly parallel implementations of the linear equation solver embedded in both of these

algorithms. In order to do this we have had to augment our modeling and analysis tools

to include communication delays—an important facet of multiprocessor system perfor-

mance that should be taken into account carefully when deriving implementations.

The following section of this chapter briefly surveys related work. This is followed

by a description of how to apply dataflow methods of modeling and analysis to MPC

problems. The next section describes in detail the application of these techniques to

reduce the time required to do the Newton-KKT part of the MPC calculations–identified

as the bottleneck in the computations for the class of MPC problems under consideration–

by means of parallel computation. An important component of this is an exploration of

ways in which multicore processors can be used to reduce the time required by Gaussian

elimination. The last section contains conclusions and suggestions for further research.

4.2 RELATED WORK

4.2.1 Control Background

MPC has been studied at least since the 1970s. At that time various works show

an incipient interest in MPC in the process industry [58][59]. The basic ideas appearing

in MPC are explicit use of a model to predict the process output at future time instants;

calculation of a control sequence minimizing a certain objective function; and the appli-
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cation of only the first control signal of the sequence calculated at each step. A detailed

introduction to MPC and some specific algorithms can be found in the book [3].

It is well known that MPC can be computation intensive and that, as a result, it can

usually be used only in applications with relatively slow dynamics [52]. One approach

to addressing this problem has been to compute the control law off-line and store it as

a lookup table [60]. However, the situations where this can be done are limited. One

would like to be able to compute the controls in real time by solving an optimal control

problem. This has prompted a number of researchers to investigate means for increasing

the speed with which optimal controls can be computed. Much of this work has focused

on improving the algorithms [52, 61].

A few researchers have addressed the implementation of MPC. Ling et al. [62]

demonstrated that a “reasonably sized constrained MPC Controller” could be imple-

mented on a modest FPGA chip. Bleris et al. [63] have proposed a computing archi-

tecture that is specifically designed for MPC. Furthermore, they have proposed a design

framework for application specific processor implementation [53]. Our approach differs

from that of Bleris et al. in that we focus on modeling the MPC algorithm structure. This

model can be used to derive efficient implementations across a range of architectures.

In particular, designers can systematically trade off performance and resource require-

ments, based on the constraints of the control problem, and the set of available hardware

resources.
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4.2.2 Embedded Signal Processing Background

Since the mid 1980s, a class of graphical program representations has been evolving

steadily, and gaining increasing acceptance among designers of digital signal processing

(DSP) systems. Foundations for such dataflow representations have been provided by

computation graphs [16], Kahn process networks [17], and dataflow architectures [18].

Synchronous dataflow (SDF) is a specialized form of dataflow that is streamlined for effi-

cient representation of DSP systems [10]. Since the introduction of SDF, a variety of such

DSP-oriented dataflow models of computation have been proposed, and DSP-oriented

models have been incorporated into many commercial design tools, including Agilent

ADS, Cadence SPW (later acquired by CoWare), National Instruments LabVIEW, and

Synopsys CoCentric. These alternative modeling approaches provide different trade-offs

among expressive power (the range of DSP applications that can be represented), anal-

ysis potential (the rigor with which implementations can be automatically validated or

optimized), and intuitive appeal.

In DSP-oriented dataflow graphs, vertices (actors) represent computations of arbi-

trary complexity, and an edge represents the flow of data as values are passed from the

output of one computation to the input of another. Each data value is encapsulated in an

object called a token as it is passed across an edge. Actors are assumed to execute iter-

atively, over and over again, as the graph processes data from one or more data streams.

These data streams are typically assumed to be of unbounded length (e.g., derived im-

plementations are not dependent on any pre-defined duration for the input signals). In

dataflow graphs, interfaces to input data streams are typically represented as source ac-
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tors (actors that have no input edges).

A limitation of SDF and related models, such as cyclo-static [22] dataflow, is that

dynamic dataflow relationships among computations cannot be described. To express

applications that involve such relationships, one must employ models that are more ex-

pressive than such static dataflow models. Earlier work on DSP-oriented dataflow models

has focused heavily on static dataflow techniques, especially SDF. As designers seek to

develop more and more complex embedded DSP systems, incorporating more flexible

sets of features, and more powerful forms of adaptivity, exploration of dynamic dataflow

models is becoming increasingly important.

A variety of dynamic dataflow modeling techniques have been developed previ-

ously, including stream-based functions [44], functional DIF [24], and the CAL actor

language [8]. In this chapter, we describe a new dynamic dataflow modeling technique,

called reactive, control-integrated dataflow (RCDF), that appears particularly promising

for MPC applications. Our approach is more specialized compared to other dynamic

dataflow techniques, but for MPC, this specialization can be exploited in useful ways to

streamline the implementation process.

Note that in addition to their formal properties, DSP-oriented dataflow models pro-

vide different kinds of software architectures for working with signal processing compu-

tations (of which control system implementations form an important sub-class). This kind

of representation can help to structure subsequent phases of design, simulation, verifica-

tion, testing, and implementation regardless of whether the underlying model of compu-

tation is explicitly supported by an off-the-shelf design tool. This is true especially in the

area of embedded systems, including embedded control, where designers are often will-
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ing to explore specialized, application/architecture-driven analysis techniques that may

provide streamlined performance, power consumption, cost, or robustness.

4.3 DATAFLOW BASED FRAMEWORK FOR MODEL PREDICTIVE

CONTROL

The dataflow framework provides a complete solution from system modeling to

optimized implementation, as shown in Figure 4.1. First of all, the control algorithm is

modeled as an RCDF model. After all the computation tasks are divided into different

actors, we profile the execution time of each actor to determine the bottleneck(s) of the

system performance. We then use the dataflow interchange format (DIF) to assist in

transforming the dataflow graph into an efficient multiprocessor implementation. DIF

provides a design language and associated software tool for experimenting with DSP-

oriented dataflow models of computation [7].

Figure 4.1: Dataflow Framework for efficient system implementation

To facilitate efficient implementation of MPC applications, we have introduced a

form of dataflow called Reactive Control integrated Dataflow (RCDF), which provides

a way to model reactive control structures that are relevant to MPC computations [56].

Reactive Control integrated Dataflow (RCDF) is an extension of SDF, which introduces

a way to model reactive control structures. The RCDF model provides a set of mutually-

exclusive edges (MEs) and imposes restrictions on the number of tokens produced or

consumed on the edge when the source or sink actor, respectively, of the edge executes.
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Among the MEs, two kinds of special MEs mutually-exclusive token production edges

(MTPE), and mutually-exclusive token consumption edges (MTCE) are especially useful

when modeling different reactive control structures such as switch and reset.

The general structure of MPC is shown in Figure 4.2. all the MPC algorithms

possess common elements and different options can be chosen for each element giving

rise to different algorithms.

Figure 4.2: Basic Structure of Model Predictive Control

In practice, many MPC problems involve repeated solutions of:

minimize
N−1∑
k=0

(x
′
(k)CTCx(k) + u

′
(k)u(k)) + x

′
(N)CTCx(N)

s.t.

x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N − 1

|ui(k)| ≤ umax, i = 1, · · · ,m, k = 0, · · · , N − 1

x(0) = x0, x0 is constant

Here A is an n×n matrix, B is an n×m matrix, and C is a p×n matrix. x(k) is a

n× 1 vector, and u(k) is an m× 1 vector. For simplicity of notation it has been assumed
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that all the controls are weighted equally. This assumption can be trivially relaxed.

In order to create a family of benchnark problems to use in evaluating and testing

our implementations of MPC, we randomly chose 50 values for the three matrices A, B,

and C, all sets with n = 10, m = 8, and p = 8. We then checked whether (A,B) was

controllable. If not, we deleted that trioA,B andC from the set. If they were controllable

we then checked if (A,C) was observable. If not, then we deleted that A, B and C. The

remaining trios of matrices constitute a collection of test problems of randomly varying

computational difficulty. To complete the problem formulation, we chose N = 50.

In order to reduce the resulting MPC problems to a form in which the Newton-KKT

or active set methods can be easily applied, we formed the large matrices given below:

Â =



B 0 · · · 0

AB B · · · 0

· · · · · · · · · · · ·

AN−1B AN−2B · · · B


,

Ĉ =



C
′
C 0 · · · 0

0 C
′
C · · · 0

· · · · · · · · · · · ·

0 0 · · · C
′
C


,
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d̂ =



A

A2

· · ·

AN


∗ x0,

The result is the quadratic programming problem < P >:

minimize (Âû+ d̂)Ĉ(Âû+ d̂) + ûT û

subject to

|ui(k)| ≤ umax, i = 1, · · · ,m, k = 0, · · · , N − 1

where

û =



u(0)

u(1)

· · ·

u(N − 1)


Note that each of the u(k) is an m-vector so the overall dimensions of û are Nm× 1.

In previous work [56, 57], we modeled, analyzed, and improved the implementation

of both the Newton KKT and active set methods for solving the general QP problem. The

details can be found in [56]. As a first test we used the optimized versions of the Newton-

KKT and active set methods to our new benchmark problems. The results are shown in

Table 1.

The simulation results were obtained using a desktop comuter with a 1.30GHz pro-
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Table 4.1: Simulation results for MPC problems: execution time for different scenarios
(sec)

statistics mean variance
seq 0.52656 0.053714

newton−KKTp 0.16953 0.0041189
active− setp 0.18098 0.0012329

cessor. seq denotes sequential implementation of the Newton KKT algorithm; Newton−

KKTp is our improved implementation of the Newton KKT algorithm; and active−setP

is our improved implementation of the active set method.

4.4 Newton KKT Incorporating a Parallel Linear System Solver

4.4.1 Newton KKT

Figure 4.3 illustrates a model, developed in [56], of the Newton KKT algorithm

based on RCDF. We implemented communication between actors based on the dataflow

model, however implementation of each actor used purely sequential programming. As

shown in Figure 4.3, there are seven actors in the system, and each actor is responsible

for a certain function. The function of each actor is described in brief as follows:

Figure 4.3: RCDF model of Newton KKT algorithm

I—The actor I is used to initialize the values of state variables and the values of

the parameters, which are used later such as tolerance threshold.
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P—The actor P is used to compute the values of f , g and the Schur component at

current value of x for every iteration.

H—The actor H is used to compute the modified Hessian matrix. It functions only

in the condition that the Hessian matrix has some eigenvalues equal to 0.

V—The actor V is used to compute the gradient of f in every iteration.

S—The actor S is used to compute the search direction for the next iteration. It finds

the solution by solving a linear system of equations. This is where Newton’s method is

used.

U—The actor U is used to compute the updated values of x, f and g.

T—The actor T is used to compare the difference between the updated value and

previous value with a given criterion, to see if the system needs to go to the next iteration

or terminate in this iteration.

Since the actors are divided based on functionality, code size is different from one

actor to another. The simplest actor may be composed of only one addition. A much more

complex actor may be expanded as a dataflow subgraph, such as that represented by the

hierarchical actor U in Figure 4.3.

We conduct simulations in MATLAB to evaluate the time each actor consumes.

From the profiling result in Table 4.2, it is obvious that H , S and U are computation

intensive actors compared with actor V .

In our previous work, we applied functional parallelism to the actors H and S. The

modified RCDF model is shown in Figure 4.4.

We carefully transformed actor U to derive an efficient implementation for it, as

shown in Figure 4.5. Since the original dataflow model was based on a sequential pro-
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Table 4.2: execution time in seconds for different actors in Newton KKT

ncond 0 3 6 9 12
H 0.015625 0.031250 0.015625 0.015625 0.031250
S 0.015625 0.042834 0.042834 0.031256 0.018420
U 0.015625 0.015625 0.011230 0.015625 0.023680
V 0.000000 0.000000 0.000000 0.000000 0.000000

Figure 4.4: Modified RCDF model of Newton KKT algorithm: modified actor H and
actor S

gramming language, this is a sequential model in terms of computation.

Figure 4.5: Sequential RCDF model of actor U

We transformed the dataflow model in order to make use of parallelism. The trans-

formed dataflow model is shown as Figure 4.6. In the transformed RCDF model, actors

Ut1 and actor Ut2 contain independent computations for a set of data. If these computa-

tions are implemented in a multi-processor system, we can improve system performance.

4.4.2 Parallel Linear System Solver

From Table 4.2, we can see S is one of the computational bottlenecks. The main

computational part of S is to solve a linear system of equations. Similar linear systems
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Figure 4.6: Modified RCDF model of actor U

of equations play an important role in many problems in control and signal processing,

including in both the Newton-KKT and active set algorithm. Because of the great impor-

tance of solving linear equations in science and engineering there is a vast literature on

the parallel computation of the solution to such problems. This literature is both complex

and confusing because parallel computing can be very sensitive to the details of the com-

puter architecture as well as to the algorithm used. Furthermore, because solving such

problems is one of the benchmarks for determining the fastest computer, programmers

have considerable incentive to develop special tricks to make specific computers solve

such problems quickly.

However, it is clear from the literature that very large improvement in the speed

with which linear equations are solved is possible using various forms of parallel com-

puting. Furthermore, there is a large variety of parallel hardware and this collection is

rapidly increasing. In order to take advantage of this we have first enhanced RCDF to

include a way to account for communication delays because such delays are very signif-

icant in highly parallel computing. We have also begun to explore ways to implement

large amounts of parallelism in the linear equations solver that is a major component of

both Newton-KKT and active set methods for solving QPs. This work is described below.

Gaussian Elimination (GE) is a general way to solve linear systems of equations and
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its parallel implementation has been heavily studied. Thus, although the QR method is

arguably better for the class of problems of interest here, it is better to begin with GE. Im-

plementations of parallel Gaussian Elimination depend on the parallel hardware platform,

such as a multiprocessor or multicore system. Computations in each processing unit are

similar to each other. However execution of the computations requires the collaboration

of all the units.

The problem we wish to solve has the form

Ax = b (4.1)

Note that the A and b here are completely different from the A and B in the MPC prob-

lems. Here A is simply a square invertible matrix and b is a vector of commensurate

size.

If we assume, for simplicity, that the diagonal elements of the matrix A are all not

zero, the critical part of a sequential program for GE is shown in Figure 4.7. In Figure 4.7,

the key computations are located in 1.2.1, 1.3.1.1 and 1.3.2. These computations can be

implemented in a parallel way.

Figure 4.7: Sequential Program of GE.
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Grid computation, such as in ScaLAPACK, is typical for parallel Gaussian Elimi-

nation. In this way, key computations are identified and then distributed in a processor

matrix.

Figure 4.8 presents our RCDF model of one processing unit for Gaussian Elimina-

tion.

Figure 4.8: RCDF model of Gaussian Elimination on Single Processing Unit

In the RCDF model above, there is a particularly important set of actors, indicated

by BLASn (Basic Linear Algebra Subprograms). BLASn represents a series of funda-

mental linear algebra computations. They can be considered to be a library to perform

basic linear algebra operations such as vector and matrix multiplication. The BLAS are

used to build larger packages such as LAPACK. Because they are heavily used in high-

performance computing, highly optimized implementations of the BLAS imlementation

have been developed by hardware vendors such as Intel and AMD. The LINPACK bench-

mark relies heavily on DGEMM, a BLAS subroutine, for its performance.

Parallel Gaussian Elimination requires the collaboration of multiple processing units.

Although each processing unit conducts similar computation tasks, they have to commu-
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nicate with each other to swap the data and calculate the final result. An RCDF model to

implement Gaussian Elimination on 4 processors is shown in Figure 4.9. In this model,

the processor matrix for GE is 2x2. Note that communication edges have been introduced

to indicate the communication between two actors. This is different from other types of

edges in RCDF models; there is no specific token related to communication edges.

Figure 4.9: RCDF model of Gaussian Elimination on Four Processing Units

In our target architecture model, we map processors onto a 2-dimensional matrix in

a block-cyclic distributed manner. Such an arrangement is represented in the form nr×nc,

where nr represents the number of processors in a row, and nc represents the number of

processors in a column of the target architecture matrix. The matrix to be processed is

also divided into a 2-D pattern, based on homogeneous blocks of size mr × mc, where

mr ≤ nr, and mc ≤ nc. In our experiments, it is assumed that mr = mc (i.e., each

block in the pattern has a “square” arrangement). The computations related to blocks are

allocated to the processor pattern in modulo fashion — after a computation is mapped to

the last row or column, the mapping process “wraps around” cyclically to the first row or

column, respectively. An example of mapping a set of 5 × 5 matrix computations onto a

2x2 processor pattern is shown in Figure 4.10.
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Figure 4.10: 2-D Block cyclic distribution of computations onto parallel processors.

We simulate our model of a distributed memory environment using the Message

Passing Interface (MPI). MPI is commonly used to simulate the communications between

different processing units in a system with distributed memory. One of the major aspects

of implementing the Gaussian Elimination algorithm on a distributed memory system

is that the communication time has to be taken into account when calculating the total

execution time. In general, interprocessor communication time has a significant effect on

the performance of algorithms on multiprocessor systems.

In our experiments, we use a constant time of 0.002sec as the communication over-

head between any two processors. Whenever there are communication between two pro-

cessors, as indicated by the communication edges shown in Figure 4.9, the communica-

tion overhead estimate is added onto the total execution time.

By applying the Schur complement to problem < P > [64], we decreased the

dimensions of the linear system from 1200x1200 to 400x400. We tested the Gaussian

Elimination algorithm with different processor patterns given the fixed block size to be

allocated in each processor. The PDGESV routine in ScaLAPACK is used in the sim-

ulation. The simulation results are shown in Table 4.3. The numbers in the table were

determined in the following way. The benchmark QPs set up earlier involving Â, Ĉ, d̂

with û as the unknown to be computed were input to our improved implementation of
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Table 4.3: Simulation results for parallel Gaussian Elimination with different processor
patterns.

Process pattern mean variance
2x2 2.000129 0.102159
2x4 1.035022 0.011020
2x8 0.795640 0.072004

2x16 0.581850 0.025809
2x2 1.985206 0.100000
4x2 1.029348 0.021832
8x2 0.808240 0.052389

16x2 0.562020 0.013480

Newton-KKT. This created a large system of linear equations to solve. This system has

some structure which we exploited to simplify the computations slightly. Almost all of

this special structure is always present in QPs derived from an MPC problem. We then

applied parallel GE in the various ways indicated in Table III to obtain the indicated re-

sults.

The simulation results indicate the effect of communication time between proces-

sors. The system performance does improve with an increasing number of processors,

however, the rate of increase decreases as the number of processors used in the compu-

tation increases. The reason is that it takes time for the processors to communicate and

synchronize with each other. The portion of communication time in the total execution

time increases with the increasing number of processors.

In our simulation, we assume that all the processors are homogenous, which means

that each processor has the same capacity of computation. Under this assumption, the

processor pattern 2× 4 results in the same speed as the pattern of 4× 2. The results will

change if we apply heterogeneous processors.
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Table 4.4: Simulation results for parallel Gaussian Elimination with different block size.

Block size mean variance
5 1.193409 0.032600

10 0.906433 0.052802
20 0.795640 0.072004
30 0.606800 0.012560
40 0.523929 0.021430
80 0.752324 0.014398

We also tested the parallel Gaussian Elimination algorithm with the same proces-

sor pattern but different block sizes. The same matrices were used as in the tests that

determined the values in Table III. The simulation results are shown in Table 4.4.

Simulation results indicate that the system performance achieves its peak when the

block size is 40. This is also the effect of communications between different processors.

In the extreme case, if we allocate the computation of each entry of the matrix into its own

processor, the communication time will dominate the execution time. On the contrary,

if we allocate the whole matrix as one block, it turns out to be a sequential Gaussian

Elimination instead of parallel version.

If we integrate the parallel Gaussian Elimination with the 2 × 8 pattern into the

Newton-KKT system, the simulation results are shown in Table 4.5. In Table 4.5, seq

denotes a sequential implementation of MPC problems using the standard Newton-KKT

method; newton−KKTs denotes parallel implementation without a parallel linear solver;

pges is sequential implementation with only the linear system solver executed in a parallel

way; pgen is a parallel implementation with parallel Gaussian Elimination.

The performance of Newton-KKT with parallel Gaussian elimination will be further

improved if we use more processors than 16. However, with 2× 8 processors, the actor S
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Table 4.5: Simulation results for MPC problems with parallel Gaussian Elimination.

statistics mean variance
seq 10.3689 1.309000

newton-KKT 6.27500 0.004994
pges 7.36600 0.247642
pgen 3.92840 0.024239

is no longer the computational bottleneck; it is not necessary to consume more hardware

resources.
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Chapter 5

Summary and Future Work

In the field of embedded systems research, dataflow provides powerful tools for

modeling applications, and analyzing properties of hardware and software implementa-

tions. This proposal explores the use of parallelism to improve system performance in

embedded systems. Because our methods improve both performance and predictability,

the research has important applications in real-time systems, where performance con-

straints must be met in a reliable way.

5.1 Related to CAL-DIF Project

We have developed a methodology for quasi-static scheduling of dynamic dataflow

specifications in the CAL language. Our approach is based on systematic construction

of statically schedulable regions, which are formally and uniquely defined in terms of

modeling concepts that underlie CAL. Our approach is applied through a novel integration

of three complementary dataflow tools — the CAL parser, TDP, and CAL2C — and

demonstrated on an IDCT module from a reconfigurable video decoder application. After

detecting statically schedulable regions (SSRs), we can efficiently make use of available

SDF techniques and tools to schedule SSRs in terms of their respective sets of SSR actors.

CAL actor programming and SSR detection allow designers and tools to analyze

different forms of concurrency, which can significantly improve the efficiency of cir-
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cuits and systems for video processing. Our experimental results show that integration

of SDF-like regions into CAL2C makes the derived multi-core implementations signifi-

cantly faster. The overall goal of our work on CAL is to provide an automatic design flow

from user-friendly design to efficient implementation of video processing systems.

Important directions for further work include the exploration of CAL-based design,

analysis and optimization for other types of hardware platforms beyond multi-core plat-

forms; programmer-directed implementation of SSRs for interactive performance tuning;

and SSR transformations (e.g., clustering and decomposition transformations) for opti-

mizing thread granularity.

5.2 Related to MPC Project

In this report, we have proposed a general framework for modeling, analyzing, and

developing fast parallel implementations of the algorithms used in MPC. We have illus-

trated the use of this approach by application to the Newton-KKT part of the computations

for a practically important class of MPC problems. We have demonstrated in simulations

that this approach does result in implementations of MPC that require much less comput-

ing time.

Much remains to be done. One example is that the QR algorithm is a better candi-

date for solving the system of linear equations within Newton-KKT and active set meth-

ods. Parallel implementations of the QR algorithm need to be developed. Furthermore,

because the communication times are greatly dependent upon the specific hardware the

methods described here need to be applied to the different examples of hardware.
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The full collection of MPC algorithms is much richer than those analyzed here.

Many MPC algorithms are much more complicated and require much more time than

the ones analyzed here. These techniques have the potential to greatly decrease the time

needed to solve these more complicated MPC problems.
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