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Overview

During my time at Michigan State University I made myself familiar with
existing literature and state of the art methods in local regularization. To-
gether with Prof. Lamm and under her supervision, I worked on a new
method for local regularization (see e.g. [3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16,
23]) which is expected to be useful for sparse recovery in Inverse Problems
(see e.g. [1, 2, 7, 9, 17, 18, 20, 21, 22]). In the (ongoing) scientific cooperation
we have already been able to show convergence properties of the regularized
solutions corresponding to the proposed new method (see details below),
and are currently working on the implementation of the method to gain
deeper insights in the computational behaviour and to do further practical
analysis.

The next steps will be to finish the implementation of the practical exam-
ple and analyze the features of the resulting method, to continue the research
on the convergence properties of the new local regularization approach and
also on the speed of convergence.

Practical Information

While staying at Michigan State Universtiy I was taken great care of by
my host, Professor Patricia K Lamm, and I owe her great thanks for that
matter. Even though the apartment I rented from the University Housing
Departement on campus was basically furnished, it still lacked many es-
sential things for living (e.g. lamps, kitchen equipment, sheets and linen,
things for cleaning, office equipment and others more). These things will
eventually be needed during such a long stay abroad, but are all together
very expensive if they have to be bought just to be left behind in the end.

For my scientific work I was kindly provided office space at the Depart-
ment of Mathematics of Michigan State University, as well as access to the
library, the internet and a printer.
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Local Regularization of Integral
Equations

Introduction

In the present paper we are concerned with finding approximate solutions
of a linear, ill-posed operator equation of the form

Au = f, (1)

where A : X → X is an integral operator on a Hilbert space X. We assume
to be given noisy data f δ, satisfying

‖f − f δ‖ ≤ δ.

It is well-known that some sort of regularization is needed to deal with these
kinds of problems (see e.g. [8, 19]) and one approach which has proven
successful, especially for Volterra Integral equations, is local regularization
(see e.g. [3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 23]). In the following we will
consider a new splitting of a Fredholm Integral operator A in a local and a
global part, in good agreement with the principles of local regularization, and
prove weak convergence of the resulting regularized solutions to a solution
of the original problem (1).

Preliminaries

Definition 1. Let Ω = [0, 1]n and define the Hilberst space X as

X = {u ∈ L2(Rn) : supp(u) ⊂ Ω}.

Let A : X → X be of the form

Au(t) =
∫

Ω
k(t, s)u(s)ds, a.e. t ∈ Ω, (2)

where the kernel k ∈ C1(Ω× Ω, R) satisfies

0 ≤ k ≤ k(t, s) ≤ k̄, a.e. (t, s) ∈ Ω2 .

Throughout this paper we assume that a solution ū of problem (1) exists
and that it belongs to the set

ū ∈ Xε := {u ∈ L2(Rn) : supp(u) ⊂ [ε, 1− ε]n}

for arbitrary but fixed ε > 0. For 0 < α < ε we write Ωα, Bα to denote the
sets

Ωα = [α, 1− α] and Bα = [−α, α]n.
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Moreover we denote the set of all solution of (1) by

M = {u ∈ X : Au = f}. (3)

In the following we assume the operator A to be monotone, i.e.

〈Au, u〉 ≥ 0 for all u ∈ X.

Remark 2. Without loss of generality we will assume that k(t, t) = 1 for
(almost) all t ∈ Ω. Indeed, if this should not be satisfied, we can consider
instead the rescaled problem

Ãũ(t) =
∫

Ω
k̃(t, s)ũ(s)ds = f̃(t), a.e. t ∈ Ω ,

where we define

k̃(t, s) =
k(t, s)√

k(t, t)
√

k(s, s)
,

f̃(t) =
f(t)√
k(t, t)

.

Having solved this problem we can recover the solution of the original prob-
lem as

u(t) = ũ(t)
√

k(t, t).

All these steps are well defined since k is assumed to be strictly bounded
away from zero.

Note that the so found rescaled operator Ã is again monotone, as can be
seen from the following calculation.

〈Ãu, u〉 = 〈Aũ, ũ〉 ≥ 0.

Remark 3. It holds that A ∈ L(X) with

‖Au‖2
X =

∫
Ω

k2(t, s)u2(s)ds ≤ k̄2

∫
Ω

u2(s)ds = k̄2 ‖u‖2
X ,

so that
‖A‖L(X) ≤ k̄.

Remark 4. Note that every linear operator between Hilbert spaces is hemi-
continuous, since the mapping

t 7→ 〈A(u + tv), w〉 = 〈Au, w〉+ t〈Av,w〉

is clearly continuous for t ∈ [0, 1] for any choice of u, v, w ∈ X.
Thus the linear, monotone operator A : X → X is also maximal mono-

tone (cf. [24]).
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Lemma 5. The set M is weakly closed and convex.

Proof. It is well known that for maximal monotone operators Au = f
holds if and only if

〈f −Av, u− v〉 ≥ 0, ∀v ∈ X. (4)

Let M3 uk ⇀ u then

〈f −Av, u− v〉 = lim
k→∞

〈f −Av, uk − v〉 ≥ 0.

Moreover if u1, u2 ∈M and 0 ≤ τ ≤ 1 then

〈f−Av, τu1+(1−τ)u2−v〉 = τ〈f−Av, u1−v〉+(1−τ)〈f−Av, u2−v〉 ≥ 0,

which shows that τu1 + (1− τ)u2 ∈M.

�

Definition 6. For α ∈ (0, ε), u ∈ X and D ⊂ Bα we define Sα,D : X → Xα

through

Sα,Du(t) :=

{ 1
|D|

∫
D u(t + s)ds for t ∈ Ωα

0 otherwise.
(5)

Moreover, we introduce the following shorthand notation

Sαu(t) := Sα,Bα(t) =
1
|Bα|

∫
Bα

u(t + s)ds

Tαu(t) := Sα,Bαn+1 (t) =
1

|Bαn+1 |

∫
Bαn+1

u(t + s)ds.

Remark 7. The operator Tαu in Defintion 6 can be equivalently expressed
as follows.

Tαu(t) =
1

|Bαn+1 |

∫
Bαn+1

u(t + s)ds

=
1

|Bαn+1 |

∫
Bα

u(t + αns)(αn)nds

=
1
|Bα|

∫
Bα

u(t + αns)ds,

where we used

1
|Bαn+1 |

(αn)n = (2αn+1)−n(αn)n = (2α)−n =
1
|Bα|

.
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Lemma 8. The adjoint S∗α,D : Xα → X of Sα,D is given as

S∗α,Dv(t) =
1
|D|

∫
D

v̂(t− s)ds, (6)

where for any v ∈ Xα we define

v̂(t) :=

{
v(t) t ∈ Ωα

0 t ∈ Ω\Ωα.
(7)

Proof. To compute the adjoint S∗α,D we note that for any u ∈ X, v ∈ Xα

we have

〈u, S∗α,Dv〉X = 〈Sα,Du, v〉Xα

=
∫

Ωα

Sα,Du(t)v(t)dt

=
1
|D|

∫
Ωα

v(t)
∫

D
u(t + s)dsdt

=
1
|D|

∫
Ωα

∫
Ω

v(t) χt+D(s) u(s)dsdt

=
1
|D|

∫
Ω

u(s)
∫

Ωα

χs−D(t) v(t)dtds

=
1
|D|

∫
Ωα

u(s)
∫

s−D
v̂(t)dtds

=
∫

Ω
u(s)

1
|D|

∫
D

v̂(s− r)drds

= 〈u,
1
|D|

∫
D

v̂(.− r)dr〉,

where χA denotes the characteristic function of A ⊂ Rn and we used the
identity

s ∈ t + D ⇐⇒ s− t ∈ D ⇐⇒ t ∈ s−D,

which yields
χt+D(s) = χs−D(t).

�

Corollary 9. If the set D ⊂ Rn satisfies −D = D, then

S∗α,Dv(t) =
1
|D|

∫
D

v̂(t + s)ds,

Proof. If −D = D we get using (6)

S∗α,Dv(t) =
1
|D|

∫
D

v(t− s)ds =
1
|D|

∫
−D

v(t + s)ds = Sα,Dv(t).
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Lemma 10. If the set D ⊂ Rn satisfies −D = D, then it holds true that

Sα,Du(t) =
1
|D|

χD ∗ u(t)

and
‖Sα,Du‖ ≤ ‖u‖.

Proof. From the definition of Sα,D and the fact that −D = D it follows
that

Sα,Du(t) =
1
|D|

∫
D

u(t + s)ds

=
1
|D|

∫
Rn

χt+D(s)u(s)ds

=
1
|D|

∫
Rn

χD(t− s)u(s)ds =
1
|D|

χD ∗ u(t)

The estimate on the norm follows from the theorem of Riesz-Thorin for
convolution, which yields

‖Sα,Du‖ ≤ 1
|D|

‖χD‖1 ‖u‖ = ‖u‖.

�

Remark 11. Since the domain Ω is bounded, it holds true for p ≤ 2 that
L2(Ω) ⊂ Lp(Ω) and

‖u‖p ≤ ‖u‖2, u ∈ L2(Ω).

Lemma 12. For u ∈ Xα it holds that

0 ≤
∫

Ωα

|u(t)| − Sα |u| (t)dt ≤ 2nα

|Bα|
‖u‖. (8)

Proof. We know∫
Ωα

Sα |u| (t)dt =
1
|Bα|

∫
Ωα

∫
Bα

|u(t + s)| dsdt

=
1
|Bα|

∫
Bα

∫
Ωα

|u(t + s)| dtds

=
1
|Bα|

∫
Bα

∫
s+Ωα

|u(t)| dtds (9)

=
1
|Bα|

∫
Bα

∫
Ωα

χs+Ωα
(t) |u(t)| dtds

=
∫

Ωα

|u(t)| dt− 1
|Bα|

∫
Bα

∫
Ωα

(1− χs+Ωα
(t)) |u(t)| dtds

7



Thus,

0 ≤
∫

Ωα

|u(t)| − Sα |u| (t)dt =
1
|Bα|

∫
Bα

∫
Ωα

(1− χs+Ωα
(t)) |u(t)| dtds

=
1
|Bα|

∫
Bα

∫
Ωα

χ
Ωα\(s+Ωα)

(t) |u(t)| dtds

=
1
|Bα|

∫
Bα

∫
Ωα

χ−(Ωα−s)\Ωα
(s− t) |u(t)| dtds

≤ 1
|Bα|

∫
Bα

χ−Ω\Ωα
∗ |u| (s)ds

≤ 1
|Bα|

‖χ−Ω\Ωα
∗ |u| ‖1 ≤

1
|Bα|

‖χ−Ω\Ωα
‖1 ‖u‖

=
1
|Bα|

|Ω\Ωα| ‖u‖ ≤
2nα

|Bα|
‖u‖,

where we used that

|Ω\Ωα| =

∣∣∣∣∣∣
n⋃

j=1

[0, 1]j−1 × ([0, α] ∪ [1− α, 1])× [0, 1]n−j

∣∣∣∣∣∣ ≤ n · (2α).

Note that we can define the convolution over all of Rn ⊃ Bα in the preceding
chain of inequalities, i.e.,

f ∗ g (s) =
∫

Rn

f(s− t)g(t)dt.

�

Remark 13. Omitting the absolute values on u in (9) the equalities remain
valid and we obtain∫

Ωα

u(t)− Sαu(t)dt =
1
|Bα|

∫
Bα

∫
Ωα

(1− χs+Ωα
(t))u(t)dtds

and thus∣∣∣∣∫
Ωα

u(t)− Sαu(t)dt

∣∣∣∣ ≤ ∫
Ωα

|u(t)| − Sα |u| (t)dt ≤ 2nα

|Bα|
‖u‖.

Lemma 14. It holds that

‖TαA− TαAT ∗α‖L(Xα) ≤ αn2−n |Bα| ‖∇2k‖∞

Proof. Making a change of variable ρ = α−ns it follows from the defini-
tion of Tα that

Tαu(t) =
1
|Bα|

∫
Bα

u(t + αnρ)dρ.
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From the respective definitions of Tα, A and Corollary 9 we thus get for
u ∈ Xα,

TαAu(t) =
1
|Bα|

∫
Bα

Au(t + αnρ)dρ

=
1
|Bα|

∫
Bα

∫
Ωα

k(t + αnρ, s)u(s)dsdρ (10)

=
1
|Bα|

∫
Ωα

∫
Bα

k(t + αnρ, s)dρ u(s)ds

and, using −Bα = Bα, we moreover have

TαA(T ∗αu)(t) =
1
|Bα|

∫
Ω

∫
Bα

k(t + αnρ, s)dρ T ∗αu(s)ds

=
1
|Bα|

∫
Ω

∫
Bα

k(t + αnρ, s)dρ
1
|Bα|

∫
Bα

û(s + αnτ)dτds

=
1
|Bα|

∫
Bα

1
|Bα|

∫
Bα

∫
Ω

k(t + αnρ, s)û(s− αnτ)ds dρdτ

=
1
|Bα|

∫
Bα

1
|Bα|

∫
Bα

∫
Ω−αnτ

k(t + αnρ, s + αnτ)û(s)ds dρdτ.

Due to τ ∈ Bα and Ωα ⊂ Ω − αnBα if follows from supp(û) ⊂ Ωα that we
can write

TαA(T ∗αu)(t) =
1
|Bα|

∫
Bα

1
|Bα|

∫
Bα

∫
Ωα

k(t + αnρ, s + αnτ)u(s)ds dρdτ

=
1

|Bα|2

∫
Ωα

∫
Bα

∫
Bα

k(t + αnρ, s + αnτ)dρdτ u(s)ds.

Using these representations we get

|(TαA− TαAT ∗αu)(t)|

=
1
|Bα|

·∣∣∣∣∫
Ωα

∫
Bα

[
k(t + αnρ, s)− 1

|Bα|

∫
Bα

k(t + αnρ, s + αnτ)dτ

]
dρ u(s)ds

∣∣∣∣
=

1
|Bα|2

∣∣∣∣∫
Ωα

∫
Bα

∫
Bα

k(t + αnρ, s)− k(t + αnρ, s + αnτ)dτdρ u(s)ds

∣∣∣∣
=

1
|Bα|2

∣∣∣∣∫
Ωα

∫
Bα

∫
Bα

〈∇2k(t + αnρ, ξ), αnτ〉dτdρ u(s)ds

∣∣∣∣
≤ ‖∇2k‖∞αn 1

|Bα|

∫
Bα

‖τ‖1dτ

∫
Ωα

|u(s)| ds

≤ ‖∇2k‖∞αn(nα)
∫

Ωα

|u(s)| ds,
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where we wrote

∇2k(t, s) =
(

∂k

∂s1
(t, s), . . . ,

∂k

∂sn
(t, s)

)T

,

and

‖∇2k‖∞ = max
{ ∣∣∣∣ ∂k

∂si
(t, s)

∣∣∣∣ : t, s ∈ Ω, 1 ≤ i ≤ n

}
.

It then holds true that

‖(TαA− TαAT ∗α)u‖2
L(Xα) =

∫
Ωα

|TαA− TαAT ∗αu)(t)|2 dt

≤ ‖∇2k‖2
∞α2(n+1)n2

∣∣∣∣∫
Ωα

|u(s)| ds

∣∣∣∣2 |Ωα|

≤ ‖∇2k‖2
∞α2(n+1)n2 ‖u‖2

Xα
,

whence the assertion follows, since |Bα| = (2α)n.

�

Definition 15. We define for α > 0 the projection rα : X → Xα through

rαu(t) =
{ u(t) if t ∈ Ωα

0 otherwise
. (11)

Lemma 16. It holds that ‖rα‖L(X,Xα) ≤ 1 and that ‖id− rα‖L(Xα) → 0 as
α → 0.

Proof. The first inequality follows immediately since for u ∈ X

‖rαu‖ ≤ ‖u‖.

The second part follows since

‖u− rαu‖2 =
∫

Ω\Ωα

u2(t)dt =
∫

Ω
χ

Ω\Ωα
(t)u2(t)dt.

Here we can apply the Dominated Convergence Theorem, since the inte-
grands are clearly dominated by u2(t) ∈ L1(Ω). We thus obtain

lim
α→0

‖u− rαu‖ =
∫

Ω
lim
α→0

χ
Ω\Ωα

(t)u2(t)dt = 0.

�

Lemma 17. It holds that

‖TαA− rαA‖L(Xα) ≤ αn2−n |Bα| ‖∇1k‖∞
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Proof. Using the representation of TαAu(t) in (10) we get for u ∈ Xα,

|(TαA− rαA)u(t)| =
∣∣∣∣∫

Ωα

[
1
|Bα|

∫
Bα

k(t + αnρ, s)dρ− k(t, s)
]

u(s)ds

∣∣∣∣
≤ 1
|Bα|

∣∣∣∣∫
Ωα

∫
Bα

k(t + αnρ, s)− k(t, s)dρ u(s)ds

∣∣∣∣
≤ 1
|Bα|

∣∣∣∣∫
Ωα

∫
Bα

〈∇1k(t, s), αnρ〉dρ u(s)ds

∣∣∣∣
≤ ‖∇1k‖∞αn 1

|Bα|

∫
Bα

‖ρ‖1dρ

∫
Ωα

|u(s)| ds

≤ ‖∇1k‖∞αn(nα)
∫

Ωα

|u(s)| ds.

It then holds true that

‖(TαA− rαA)u‖2
L(Xα) ≤ ‖∇1k‖2

∞α2(n+1)n2 ‖u‖2
Xα

,

whence the assertion follows, since |Bα| = (2α)n.

�

Local Regularization

With the preliminary analysis from the previous section we are now in po-
sition to define the localized approach to regularization which is of main
interest in this paper.

Definition 18. We define the following splitting of the operator TαA : Xα → Xα,

TαAu(t) =
1
|Bα|

∫
Ωα

∫
Bα

k(t + αnρ, s)dρ u(s)ds = (TαA)gu(t) + (TαA)`u(t),

(12)
where for u ∈ Xα we define

(TαA)gu(t) :=
1
|Bα|

∫
Ωα\(t+Bα)

∫
Bα

k(t + αnρ, s)dρ u(s)ds

(TαA)`u(t) :=
1
|Bα|

∫
t+Bα

∫
Bα

k(t + αnρ, s)dρ u(s)ds

=
1
|Bα|

∫
Bα

∫
Bα

k(t + αnρ, t + s)dρ u(t + s)ds

Lemma 19. Let
κ1 = nεn ‖∇1k‖∞ + n ‖∇2k‖∞, (13)

then for all κ ≥ κ1 and u ∈ Xα it holds that

‖(TαA)`u‖Xα ≤ |Bα| (1 + κα) ‖u‖Xα . (14)
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Proof. Using k(t, t) = 1 for all t ∈ Ω,

(TαA)`u(t) =
1
|Bα|

∫
Bα

∫
Bα

k(t + αnρ, t + s)− k(t, t + s)dρ u(t + s)ds

+
1
|Bα|

∫
Bα

∫
Bα

k(t, t + s)− k(t, t)dρ u(t + s)ds +
∫

Bα

u(t + s)ds.

We estimate the resulting terms individually as follows. For the first term
we obtain

1
|Bα|

∣∣∣∣∫
Bα

∫
Bα

k(t + αnρ, t + s)− k(t, t + s)dρ u(t + s)ds

∣∣∣∣
≤ 1
|Bα|

∫
Bα

∫
Bα

|〈∇1k(ξ, t + s), αnρ〉| dρ |u(t + s)| ds

≤ αn ‖∇1k‖∞
1
|Bα|

∫
Bα

∫
Bα

‖ρ‖1dρ |u(t + s)| ds

≤ αn ‖∇1k‖∞ |Bα| (nα)
1
|Bα|

∫
Bα

|u(t + s)| ds

= nαn+1 ‖∇1k‖∞ |Bα|Sα( |u|)(t),

where we wrote

∇1k(t, s) =
(

∂k

∂t1
(t, s), . . . ,

∂k

∂tn
(t, s)

)T

,

and

‖∇1k‖∞ = max
{ ∣∣∣∣ ∂k

∂ti
(t, s)

∣∣∣∣ : t, s ∈ Ω, 1 ≤ i ≤ n

}
.

Similarly, we get for the second term

1
|Bα|

∣∣∣∣∫
Bα

∫
Bα

k(t, t + s)− k(t, t)dρ u(t + s)ds

∣∣∣∣
≤ 1
|Bα|

∫
Bα

∫
Bα

|〈∇2k(t, ξ), s〉| dρ |u(t + s)| ds

≤ ‖∇2k‖∞
∫

Bα

‖s‖1 |u(t + s)| ds

≤ nα ‖∇1k‖∞ |Bα|Sα( |u|)(t).

Thus, we obtain

|(TαA)`u(t)| ≤
(
nαn+1 ‖∇1k‖∞ + nα ‖∇2k‖∞ + 1

)
|Bα|Sα( |u|)(t),

whence it follows that

‖(TαA)`u‖Xα ≤
(
nαn+1 ‖∇1k‖∞ + nα ‖∇2k‖∞ + 1

)
|Bα| ‖Sα( |u|)‖Xα

≤ (κα + 1) |Bα| ‖u‖Xα .
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Lemma 20. Let

κ2 = nεn ‖∇1k‖∞ + 3n ‖∇2k‖∞, (15)

then for all κ ≥ κ2 and u ∈ Xα it holds that

〈(TαA)`u, u〉Xα = |Bα| ‖u‖2 + 〈Gαu, u〉Xα , (16)

where

−(2 + ακ) |Bα| ‖u‖2
Xα

≤ 〈Gαu, u〉Xα ≤ κα |Bα| ‖u‖2
Xα

.

Proof. Using k(t, t) = 1 for all t ∈ Ω (cf. Remark 2), we find that

(TαA)`u(t) = Gαu(t) + |Bα|u(t),

where

Gαu(t) =
1
|Bα|

∫
Bα

∫
Bα

k(t + αnρ, t + s)− k(t, t + s)dρ u(t + s)ds

Hαu(t) +
1
|Bα|

∫
Bα

∫
Bα

k(t, t + s)− k(t, t)dρ u(t)ds,

and Hα is defined as

Hαu(t) =
1
|Bα|

∫
Bα

∫
Bα

k(t, t + s)dρ (u(t + s)− u(t))ds.

This readily establishes the decomposition (16) and it remains to estimate
〈Gαu, u〉. To this end consider the terms of 〈Gαu, u〉 individually. For the
contribution of the first term it holds that

1
|Bα|

∫
Ωα

∫
Bα

∫
Bα

k(t + αnρ, t + s)− k(t, t + s)dρ u(t + s)ds u(t)dt

=
1
|Bα|

∫
Ωα

∫
Bα

∫
Bα

〈∇1k(ξ, t + s), αnρ〉dρ u(t + s)ds u(t)dt

≤ ‖∇1k‖∞αn 1
|Bα|

∫
Bα

‖ρ‖1dρ

∫
Ωα

∫
Bα

|u(t + s)| ds |u(t)| dt

≤ ‖∇1k‖∞αn(nα) |Bα| 〈Sα(|u|), |u|〉
≤ nαn+1 ‖∇1k‖∞ |Bα| ‖u‖2,

and, similarly, for the contribution of the last term we obtain
1
|Bα|

∫
Ωα

∫
Bα

∫
Bα

k(t, t + s)− k(t, t)dρ u(t)ds u(t)dt

=
1
|Bα|

∫
Ωα

∫
Bα

∫
Bα

〈∇2k(t, ξ), s〉dρds u2(t)dt

≤ ‖∇2k‖∞
∫

Bα

‖s‖1ds ‖u‖2

≤ nα ‖∇2k‖∞ |Bα| ‖u‖2.

13



Altogether this shows that

〈Gαu, u〉 ≤ 〈Hαu, u〉+ κ1α |Bα| ‖u‖2.

To give an estimate for 〈Hαu, u〉 we write

〈Hαu, u〉 ≤
∫

Ωα

∫
Bα

|k(t, t + s)− k(t, t)| · |u(t + s)− u(t)| ds |u(t)| dt

+
∫

Ωα

∫
Bα

u(t + s)− u(t)ds u(t)dt

≤ nα ‖∇2k‖∞ |Bα| (〈Sα |u| , |u|〉+ ‖u‖2) + |Bα| (〈Sαu, u〉 − ‖u‖2) (17)

≤ 2nα ‖∇2k‖∞ |Bα| ‖u‖2.

We thus obtain the upper bound

〈Gαu, u〉 ≤ κ2α |Bα| ‖u‖2.

Inserting absolut values into (17) and using Lemma 10 it holds

|〈Hαu, u〉| ≤ 2nα ‖∇2k‖∞ |Bα| ‖u‖2 + 2 |Bα| ‖u‖2,

which establishes the lower bound through

|〈Gαu, u〉| ≤ (2 + ακ2) |Bα| ‖u‖2.

�

The following corollary is an immediate consequence of the previous
Lemma.

Corollary 21. It holds true that

|〈(TαA)`u, u〉| ≤ |Bα| (1 + ακ2) ‖u‖2. (18)

Let us now define what will be the regularizing approximation of the
local part of TαA.

Definition 22. Let ν > 1 and c > κ1 be fixed. We define

aα := (ν + cα) |Bα| (19)

Lemma 23. With κ1 as in (13) it holds that

‖(TαA)` − aαid‖L ≤ (1 + ν + (κ1 + c)α) |Bα| . (20)

Proof. Using Lemma 19 with κ = κ1, we obtain

‖(TαA)`u− aαu‖2 = ‖(TαA)`u‖2 − 2〈(TαA)`u, aαu〉+ a2
α ‖u‖2

≤
(
(1 + κ1α)2 + 2(1 + κ1α)(ν + cα) + (ν + cα)2

)
|Bα|2 ‖u‖2

= (1 + ν + (κ1 + c)α)2 |Bα|2 ‖u‖2,

whence the assertion follows.
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�

Lemma 24. With κ1 as in (13) it holds that

〈
(
aαid− (TαA)`

)
u, u〉 ≥ (ν − 1 + (c− κ1)α) |Bα| ‖u‖2. (21)

Proof. The estimate is an immediate consequence of (14) and (19).

�

Lemma 25. Let

κ3 = nεn ‖∇1k‖∞ + (1 + 2−n)n ‖∇2k‖∞, (22)

then it holds that

〈
(
(TαA)g + aαid

)
u, u〉 ≥ (ν − 1 + (c− κ3)α) |Bα| ‖u‖2. (23)

Proof. Using Lemma 14 and 24, we obtain

〈
(
(TαA)g + aαid

)
u, u〉

= 〈
(
TαA− TαAT ∗α

)
u, u〉+ 〈TαAT ∗αu, u〉+ 〈

(
aαid− (TαA)`

)
u, u〉

≥ −αn2−n |Bα| ‖∇2k‖∞ ‖u‖2 + (ν − 1 + (c− κ1)α) |Bα| ‖u‖2

= (ν − 1 + (c− κ3)α) |Bα| ‖u‖2.

whence the assertion follows.

�

Lemma 26. For α > 0 small enough the operator(
(TαA)g + aαid

)−1 : Xα → Xα

exists and it holds that

‖
(
(TαA)g + aαid

)−1‖L ≤
1

c(α)
, (24)

where
c(α) = (ν − 1 + (c− κ3)α) |Bα| . (25)

Proof. From Lemma 25 we see that
(
(TαA)g + aαid

)
: Xα → Xα is

strongly monotone (for α small enough). Moreover, every linear operator
is clearly hemicontinuous so that it follows from [24, Proposition 32.7] that(
(TαA)g+aαid

)
is maximal monotone. From the strong monotonicity we also

obtain injectivity and coercivity with respect to 0 and using [24, Proposition
32.27] we see that

R
(
(TαA)g + aαid

)
= Xα.

15



We have thus shown that
(
(TαA)g + aαid

)−1 exists and is single valued. To
complete the proof we use Lemma 25 to obtain

(ν − 1 + (c− κ3)α) |Bα| ‖
(
(TαA)g + aαid

)−1
u‖2

≤ 〈u,
(
(TαA)g + aαid

)−1
u〉

≤ ‖u‖ ‖
(
(TαA)g + aαid

)−1
u‖,

whence the estimate in the assertion follows.

�

Convergence

Definition 27. Let α > 0, then we choose the regularized solution uα ∈ Xα

such that
(TαA)guα + aαuα = Tαf (26)

Lemma 28. It holds that

uα − ū =
(
(TαA)g + aαid

)−1((TαA)` − aαid)ū.

Proof. We use
((TαA)g + (TαA)`)ū = Tαf (27)

�

We will now see that the regularized solutions from Definition 27 con-
verge weakly to the set M of solutions of Au = f . To this end we will need
the following Lemma.

Lemma 29. Assume that a family {uα} satisfying (26) is bounded and
converges weakly to u ∈ X, then for all v ∈ X

〈TαA(uα − rαv), uα − rαv〉 → 〈f −Av, u− v〉 as α → 0.

Proof. By the virtue of (12) and (26) we obtain

〈TαA(uα − rαv), uα − rαv〉 = 〈
(
(TαA)` + (TαA)g

)
uα − TαArαv, uα − rαv〉

= 〈((TαA)` − aα)uα + Tαf − TαArαv, uα − rαv〉

=
5∑

i=1

Ti,
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where

T1 = 〈((TαA)` − aα)uα, uα − rαv〉
T2 = 〈Tαf − rαf, uα − rαv〉
T3 = 〈rαf − rαAv, uα − rαv〉
T4 = 〈rαAv − TαAv, uα − rαv〉
T5 = 〈TαAv − TαArαv, uα − rαv〉.

Looking at these expressions individually and keeping in mind the bounded-
ness of {uα}, we get from Lemma 23, Lemma 17 and Lemma 16, respectively,
that as α → 0

|T1| ≤ (1 + ν + (κ2 + c)α) |Bα| ‖uα‖ ‖uα − rαv‖ → 0,

|T2 + T4| ≤ ‖(TαA− rαA)(ū− v)‖ ‖uα − rαv‖
≤ n2−n |Bα| ‖∇1k‖∞ ‖ū− v‖ ‖uα − rαv‖ → 0,

|T5| ≤ ‖TαA‖L(X) ‖(id− rα)v‖ ‖uα − rαv‖ → 0.

To analyze the asymptotic behaviour of T3 we note that

|〈f −Av, uα − v〉 − 〈rα(f −Av), uα − rαv〉| = |〈(id− rα)(f −Av), uα − v〉|
≤ ‖(id− rα)(f −Av)‖ ‖uα − v‖
→ 0 as α → 0.

Thus, the weak convergence, uα ⇀ u, yields

T3 = 〈f −Av, uα − v〉+ 〈rαf − rαAv, uα − rαv〉 − 〈f −Av, uα − v〉
→ 〈f −Av, u− v〉 as α → 0.

�

Proposition 30. Let αk → 0, then the sequence uk = uαk
⇀ M as defined

in (3).

Proof. From Lemmas 28, 25 and 23 we see that

‖uα − ū‖ ≤ ‖
(
(TαA)g + aαid

)−1‖ ‖(TαA)` − aαid‖ ‖ū‖ ≤ C(α) ‖ū‖,

where C(α) is uniformly bounded. Therefore the family {uk} is bounded
and we can extract a subsequence, denoted again by {uk}, such that uk ⇀
u ∈ Xε. To show that the weak limit u is indeed a solution of (1) we make
use of the maximal monotonicity of A and it remains to show that

〈f −Av, u− v〉 ≥ 0, ∀v ∈ X.
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Writing Tk = Tαk
, rk = rαk

we have for arbitrary v ∈ X using Lemma 14
that

0 ≤ 〈(TkAT ∗k )(uk − rkv), uk − rkv〉
≤ 〈(TkAT ∗k − TkA)(uk − rkv), uk − rkv〉+ 〈TkA(uk − rkv), uk − rkv〉
≤ αk |Bαk

|n2−n ‖∇2k‖∞ ‖uk − rkv‖2 + 〈TkA(uk − rkv), uk − rkv〉.

Thus, it follows from Lemma 29 that

0 ≤ lim
k→∞

〈(TkAT ∗k )(uk − rkv), uk − rkv〉 = 〈f −Av, u− v〉,

which completes the proof. The same reasoning can be applied to any sub-
sequence of the original {uk} and thus the whole sequence weakly converges
to M.

�

References

[1] Anzengruber S W and Ramlau R 2010 Morozov’s discrepancy principle
for Tikhonov-type functionals with nonlinear operators Inverse Prob-
lems 26(2) 025001 doi:10.1088/0266-5611/26/2/025001

[2] Bredies K and Lorenz D A 2008 Iterated hard shrinkage for minimiza-
tion problems with sparsity constraints SIAM J. Sci. Comp. 30(2) 657–
683

[3] Brooks C D 2007 A Discrepancy Principle for Parameter selection in
the Local Regularization of Linear Volterra Inverse Problems Ph.D. the-
sis Department of Mathematics, Michigan State University East Lans-
ing, MI

[4] Cinzori A C 2004 Continuous future polynomial regularization of 1-
smoothing Volterra problems Inverse Problems 20(6) 1791–806 doi:
10.1088/0266-5611/20/6/006

[5] Cinzori A C and Lamm P K 2000 Future polynomial regularization of
ill-posed Volterra equations SIAM J. Numer. Anal. 37 949–79

[6] Cui C, Lamm P K and Scofield T L 2007 Local regularization for n-
dimensional integral equations with applications to image processing
Inverse Problems 23(4) 1611 doi:10.1088/0266-5611/23/4/014

[7] Daubechies I, Defries M and De Mol C 2004 An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint Comm.
Pure Appl. Math. 51 1413–1541

18



[8] Engl H W, Hanke M and Neubauer A 1996 Regularization of In-
verse Problems vol. 375 of Mathematics and its Application (Dordrecht:
Kluwer Academic Publishers)

[9] Grasmair M, Haltmeier M and Scherzer O 2008 Sparse regularization
with `q penalty term Inverse Problems 24(5) 1–13

[10] Lamm P K 1995 Future-sequential regularization methods for ill-posed
Volterra equations: applications to the inverse heat conduction problem
J. Math. Anal. Appl. 195 469–94

[11] Lamm P K 1996 Approximation of ill-posed Volterra problems via
predictor-corrector regularization methods SIAM J. Appl. Math. 56
524–41

[12] Lamm P K 2000 A survey of regularization methods for firts-kind
Volterra equations Surveys on Solution Methods for Inverse Problems
(Vienna: Springer)

[13] Lamm P K 2003 Variable-smoothing local regularization methods for
first-kind integral equations Inverse Problems 19 195–216

[14] Lamm P K 2005 Full Convergence of sequential local regularization
methods for Volterra inverse problems Inverse Problems 21(3) 785–803
doi:10.1088/0266-5611/21/3/001

[15] Lamm P K and Dai Z 2005 On local regularization methods for lin-
ear Volterra equations and nonlinear equations of Hammerstein type
Inverse Problems 21(5) 1773 doi:10.1088/0266-5611/21/5/016

[16] Lamm P K and Scofield T L 2001 Local regularization methods for the
stabilization of ill-posed Volterra problems Numer. Funct. Anal. Opt.
22 913–40

[17] Lorenz D A 2008 Convergence rates and source conditions for Tikhonov
regularization with sparsity constraints Journal of Inverse and Ill-Posed
Problems 16 463–478

[18] Lorenz D A and Trede D 2009 Optimal convergence rates for Tikhonov
regularization in Besov Scales Journal of Inverse and Ill Posed Problems
17(1) 69–76

[19] Louis A K 1996 Approximate Inverse for linear and some nonlinear
problems Inverse Problems 12 175–90

[20] Ramlau R 2008 Regularization properties of Tikhonov regularization
with sparsity constraints Electron. Trans. Numer. Anal. 30 54–74

19



[21] Ramlau R and Resmerita E 2010 Convergence rates for regularization
with sparsity constraints Electronic Transactions on Numerical Analy-
sis 37 87–104

[22] Ramlau R and Teschke G 2006 A Tikhonov-based projection itera-
tion for non-linear ill-posed problems with sparsity constraints Numer.
Math. 104(2) 177–203 doi:10.1007/s00211-006-0016-3

[23] Ring W and Prix J 2000 Sequential predictor-corrector regulariza-
tion methods and their limitations Inverse Problems 16(3) 619–34 doi:
10.1088/0266-5611/16/3/306

[24] Zeidler E 1990 Nonlinear Functional Analysis and its Applications II/B:
Nonlinear Monotone Operators (New York: Springer-Verlag)

20


